This work discusses issues related to the impact of urbanization on the
microphysical processes of precipitating systems associated with synoptic,
mesoscale, and local scale systems. Among the issues addressed is the impact of
urban heat island (UHI) in São Paulo city center and urban
densification (UD) in theMetropolitan
Area of São Paulo (MASP) on the microphysical, dynamic, and thermodynamic properties and distribution of
precipitation and heavier rainfall from sea-breeze (SB) e cold-front (CF)
combined during their space-time evolutions. For this purpose, it used four
components: classification of hydrometeors with fuzzy logic, calculation of the
raindrop diameters, an estimate of liquid water mass and ice mass from
polarimetric-variables measured with dual-pola- rization X-band meteorological
radar. The results indicated that urban densification (UD) and heat island
(UHI) of the S
References
[1]
Rojas, J.L.F., Pereira Filho, A.J., Karam, H.A., Vemado, F. and Masson, V. (2018) Effects of Explicit Urban-Canopy Representation on Local Circulations above a Tropical Mega-City. Boundary Layer Meteorology, 166, 83-111. https://doi.org/10.1007/s10546-017-0292-8
[2]
Pereira Filho, A.J., Massambani, O., Martins, P. and Cazenave, F. (2007) An Operational Mobile XPOL for Hydrometeorological Applications in Brazil. 33rd Conference on Radar Meteorology, Cairns, 5 August 2007, Paper P10.14.
[3]
Ferreira, M.J., de Oliveira, A.P. and Soares, J. (2011) Anthropogenic Heat in the City of São Paulo, Brazil. Theoretical and Applied Climatology, 104, 43-56. https://doi.org/10.1007/s00704-010-0322-7
[4]
Pereira Filho, A.J. (2012) A Mobile X-POL Weather Radar for Hydrometeorological Applications in the Metropolitan Area of São Paulo, Brazil. Geoscientific Instrumentation, Methods, and Data Systems, 1, 169-185. https://doi.org/10.5194/gi-1-169-2012
[5]
Pereira Filho, A.J., Vemado, F., Saito, K., Seko, H., Rojas, J.L.F. and Abi Karam, H. (2018) ARPS Simulations of Convection during TOMACS. Journal of the Meteorological Society of Japan, Ser. II, 96A, 247-263.
[6]
Hallak, R. (2007) Simulações numéricas de tempestades severas na RMSP. Ph.D. Thesis, Department of Atmospheric Science, University of Sao Paulo, São Paulo.
[7]
Freitas, E.D., Rozoff, C.M., Cotton, W.R. and Dias, P.L.S. (2007) Interactions of an Urban Heat Island and Sea-Breeze Circulations during Winter over the Metropolitan Area of São Paulo, Brazil. Boundary-Layer Meteorology, 122, 43-65. https://doi.org/10.1007/s10546-006-9091-3
[8]
Bourscheidt, V., Pinto Jr., O. and Naccarato, K.P. (2016) The Effects of Sao Paulo Urban Heat Island on Lightning Activity: Decadal Analysis (1999-2009). Journal of Geophysical Research: Atmospheres, 121, 4429-4442. https://doi.org/10.1002/2016JD024782
[9]
Pereira Filho, A.J., Barros, M.T.L., Hallak, R. and Gandu, A.W. (2016) Enchentes na regiao metropolitana de São Paulo: Aspectos de mesoescala e avaliação de impactos. 13th Brazilian Congress Brasileiro of Meteorology, Fortaleza, September 2016, 28- 93.
[10]
He, G.X., Yu, C.W.F., Lu, C. and Deng, Q.H. (2013) The Influence of Synoptic Pattern and Atmospheric Boundary Layer on PM10 and Urban Heat Island. Indoor and Built Environment, 22, 796-807. https://doi.org/10.1177%2F1420326X13503576
[11]
Vemado, F. and Pereira Filho, A.J. (2016) Severe Weather Caused by Heat Island and Sea Breeze Effects in the Metropolitan Area of São Paulo, Brazil. Advances in Meteorology, 2016, Article ID 8364134. https://doi.org/10.1155/2016/8364134
[12]
Pereira Filho, A.J., Vemado, F., Peres, J.R., Silva Jr., I.W. and Tanaka, K. (2013) Measurements of Drop Size Distribution in a Megacity. American Meterological Society, Section 2A. 3, 1-5. https://ams.confex.com/ams/36Radar/webprogram/Paper228510.html
[13]
Oliveira, A.P. and Dias, S. (1982) Aspectos observacionais da brisa marítima em São Paulo. Anais Congresso Brasileiro de Metereologia, 3, 129-145.
[14]
Nesbitt, S.W., Cifelli, R. and Rutledge, S.A. (2006) Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features. Monthly Weather Review, 134, 2702- 2721. https://doi.org/10.1175/MWR3200.1
[15]
Gochis, D.J., Shuttleworth, W.J. and Yang, Z.L. (2002) Sensitivity of the Modeled North American Monsoon Regional Climate to Convective Parameterization. Monthly Weather Review, 130, 1282-1298. https://doi.org/10.1175/1520-0493(2002)130%3C1282:SOTMNA%3E2.0.CO;2
[16]
Wang D., Yin J. and Zhai G. (2002) In-Situ Measurements of Cloud-Precipitation Microphysics in the East Asian Monsoon Region since 1960. Journal of Meteorological Research, 29, 155-179. https://doi.org/10.1007/s13351-015-3235-7
[17]
Kraut, I. (2015) Separating the Aerosol Effect in Case of a “Medicane” (Vol. 68). KIT Scientific Publishing. https://doi.org/10.5445/KSP/1000047813
[18]
Bauer, P., Thorpe, A. and Brunet, G. (2015) The Quiet Revolution of Numerical Weather Prediction. Nature, 525, 47-55. https://doi.org/10.1038/nature14956
[19]
Pereira Filho, A.J., Barros, M.T.L., Hallak, R. and Gandu, A.W. (2013) Measurements of Drop Size Distribution in a Megacity. 36th Conference on Radar Meteorology, Breckenridge, 6-20 September 2013, 28-93.
[20]
Rinehart, R.E. (2010) Radar for Meteorologists: Or You, too, Can Be a Radar Meteorologist III. In: Rinehart, R.E., Ed., Radar for Meteorologists, 4th Edition, Rinehart Publications, Columbia, 482.
[21]
Silva, T., Beneti, C., Siqueira, P., Buzzi, M. and Calvetti, L. (2017). Severe Weather Identification Using Polarimetric Radar and Machine Learning Techniques. 38th Conference on Radar Meteorology, AMS, Chicago.
[22]
Fabry, F. (2015) Radar Meteorology: Principles and Practice. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107707405
[23]
Kumjian, M. (2013) Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables. Journal of Operational Meteorology, 1, 226-242. https://doi.org/10.15191/nwajom.2013.0119
[24]
Ruzanski, E. and Chandrasekar, V. (2012) Nowcasting Rainfall Fields Derived from Specific Differential Phase. Journal of Applied Meteorology and Climatology, 51, 1950- 1959. https://doi.org/10.1175/JAMC-D-11-081.1
[25]
Vivekanandan, J., Zrnic, D.S., Ellis, S.M., Oye, R., Ryzhkov, A.V. and Straka, J. (1999) Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements. Bulletin of the American Meteorological Society, 80, 381-388. https://doi.org/10.1175/1520-0477(1999)080%3C0381:CMRUSB%3E2.0.CO;2
[26]
Lang, T., Dolan, B., Guy, N., Gerlach, C. and Hardin, J. (2019) CSU-azxRadar-met/CSU RadarTools: CSU RadarTools v1.3.
[27]
Helmus, J.J. and Collis, S.M. (2016) The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open Research Software, 4, Article No. e25. https://doi.org/10.5334/jors.119
[28]
Dolan, B. and Rutledge, S.A (2009) A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars. Journal of Atmospheric and Oceanic Technology, 26, 2071-2088. https://doi.org/10.1175/2009JTECHA1208.1
[29]
Rauber, R.M. and Nesbitt, S.W. (2018) Radar Meteorology: A First Course. John Wiley Sons, Hoboken. https://doi.org/10.1002/9781118432662
[30]
Heske, T. and Heske, J. (1996) “Fuzzy” Logic for Real World Design. Annabooks, Rancho Mirage, 428.
[31]
Liu, H. and Chandrasekar, V. (2000) Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and in Situ Verification. Journal of Atmospheric and Oceanic Technology, 17, 140-164. https://doi.org/10.1175/1520-0426(2000)017%3C0140:COHBOP%3E2.0.CO;2
[32]
Cifelli, R., Petersen, W.A., Carey, L.D., Rutledge, S.A. and da Silva Dias, M.A. (2002) Radar Observations of the Kinematic, Microphysical, and Precipitation Characteristics of Two MCSs in TRMM LBA. Journal of Geophysical Research: Atmospheres, 107, LBA 44-1-LBA 44-16. https://doi.org/10.1029/2000JD000264
Khain, A., Rosenfeld, D. and Pokrovsky, A. (2005) Aerosol Impact on the Dynamics and Microphysics of Deep Convective Clouds. Quarterly Journal of the Royal Meteorological Society, 131, 2639-2663. https://doi.org/10.1256/qj.04.62
[35]
Lawson, R.P., Woods, S. and Morrison, H. (2015) The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds. Journal of the Atmospheric Sciences, 72, 2429-2445. https://doi.org/10.1175/JAS-D-14-0274.1
[36]
Liu, C., Moncrieff, M.W. and Zipser, E.J. (1997) Dynamical Influence of Microphysics in Tropical Squall Lines: A Numerical Study. Monthly Weather Review, 125, 2193-2210. https://doi.org/10.1175/1520-0493(1997)125%3C2193:DIOMIT%3E2.0.CO;2
[37]
Szeto, K. and Stewart, R. (1997) Effects of Melting on Frontogenesis. Journal of the Atmospheric Sciences, 54, 689-702. https://doi.org/10.1175/1520-0469(1997)054%3C0689:EOMOF%3E2.0.CO;2
[38]
Fujita, T.T. and McCarthy, J. (1999) Radar in Meteorology. American Meteorological Society, Boston, 657-681.
[39]
Lin, H.M. and Wang, P.K. (1997) A Numerical Study of Microphysical Processes in the 21 June 1991 Northern Taiwan Mesoscale Precipitation System. Terrestrial Atmospheric and Oceanic, 8, 382-404. https://doi.org/10.3319/TAO.1997.8.4.385(A)