全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氨基苯甲酸衍生物抑制SHP2活性研究
Biological Evaluation of Aminobenzoic Acid Derivatives against SHP2

DOI: 10.12677/HJMCe.2021.92011, PP. 87-93

Keywords: SHP2,抑制剂,氨基苯甲酸,构效关系
SHP2
, Inhibitors, Aminobenzoic Acid, Structure-Activity Relationships (SARs)

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,SHP2抑制剂还存在着生物利用度低等问题,需要一些结构新颖的SHP2抑制剂。本文为拓展SHP2抑制剂的结构多样性,合成了18个氨基苯甲酸衍生物,其中3-(5-甲基呋喃-2-羧酰胺基)苯甲酸(化合物15)在50 mM浓度下表现了48.51%的抑制率,构效关系分析结果表明,羧基有利于抑制SHP2活性,为基于片段的SHP2抑制剂研究工作奠定了一定的基础。
SHP2 inhibitors also have problems such as low bioavailability, and SHP2 inhibitors with novel structures are needed. In order to expand the structural diversity of SHP2 inhibitors, 18 amino-benzoic acid derivatives were synthesized. Among them, 3-(5-methylfuran-2-carboxamido)benzoic acid (Compound 15) showed 48.51% inhibitory rate at the concentration of 50 mM. The struc-ture-activity relationship analysis results show that the carboxyl group has positive influence on the activity against SHP2 and can be used as small fragments for subsequent development of SHP2 in-hibitors.

References

[1]  Tonks, N.K. (2013) Protein Tyrosine Phosphatases—From Housekeeping Enzymes to Master Regulators of Signal Transduction. The FEBS Journal, 280, 346-378.
https://doi.org/10.1111/febs.12077
[2]  Hunter, T. (2009) Tyro-sine Phosphorylation: Thirty Years and Counting. Current Opinion in Cell Biology, 21, 140-146.
https://doi.org/10.1016/j.ceb.2009.01.028
[3]  He, Y., Liu, S., Menon, A., et al. (2013) A Potent and Selective Small-Molecule Inhibitor for the Lymphoid-Specific Tyrosine Phosphatase (LYP), a Target Associated with Autoim-mune Diseases. Journal of Medicinal Chemistry, 56, 4990-5008.
https://doi.org/10.1021/jm400248c
[4]  Li, L., Modi, H., Mcdonald, T., et al. (2011) A Critical Role for SHP2 in STAT5 Activation and Growth Factor-Mediated Pro-liferation, Survival, and Differentiation of Human cd34+ Cells. Blood, 118, 1504-1515.
https://doi.org/10.1182/blood-2010-06-288910
[5]  Hu, Z., Jia, L., Gao, Q., et al. (2017) Shp2 Overexpression Enhances the Invasion and Metastasis of Ovarian Cancer in Vitro and in Vivo. OncoTargets and Therapy, 10, 3881-3891.
https://doi.org/10.2147/OTT.S138833
[6]  You, M., Yu, D.H. and Feng, G.S. (1999) Shp-2 Tyrosine Phosphatase Functions as a Negative Regulator of the Interferon-Stimulated Jak/Stat Pathway. Molecular and Cellular Biology, 19, 2416-2424.
https://doi.org/10.1128/MCB.19.3.2416
[7]  Zhang, E., Chapeau, E., Hagihara, K. and Feng, G.S. (2004) Neuronal Shp2 Tyrosine Phosphatase Controls Energy Balance and Metabolism. Proceedings of the National Academy of Sciences, 101, 16064-16069.
https://doi.org/10.1073/pnas.0405041101
[8]  Wu, C.J., O’Rourke, D.M., Feng, G.S., et al. (2001) The Tyrosine Phosphatase SHP-2 Is Required for Mediating Phosphatidylinositol 3-Kinase/akt Activation by Growth Factors. Onco-gene, 20, 6018-6025.
https://doi.org/10.1038/sj.onc.1204699
[9]  Zhang, S.Q., Tsiaras, W.G., Araki, T., et al. (2002) Receptor-Specific Regulation of Phosphatidylinositol 3’-Kinase Activation by the Protein Tyrosine Phosphatase Shp2. Molecular and Cel-lular Biology, 22, 4062-4072.
https://doi.org/10.1128/MCB.22.12.4062-4072.2002
[10]  Cunnick, J.M., Meng, S., Ren, Y., et al. (2002) Regula-tion of the Mitogen-Activated Protein Kinase Signaling Pathway by Shp2. Journal of Biological Chemistry, 277, 9498-9504.
https://doi.org/10.1074/jbc.M110547200
[11]  Maroun, C.R., Naujokas, M.A., Holgado-Madruga, M., et al. (2000) The Tyrosine Phosphatase Shp-2 Is Required for Sustained Activation of Extracellular Signal-Regulated Ki-nase and Epithelial Morphogenesis Downstream from the Met Receptor Tyrosine Kinase. Molecular and Cellular Biolo-gy, 20, 8513-8525.
https://doi.org/10.1128/MCB.20.22.8513-8525.2000
[12]  Shi, Z. Q., Yu, D.H., Park, M., et al. (2000) Molecular Mechanism for the Shp-2 Tyrosine Phosphatase Function in Promoting Growth Factor Stimulation of Erk Activity. Mo-lecular and Cellular Biology, 20, 1526-1536.
https://doi.org/10.1128/MCB.20.5.1526-1536.2000
[13]  Li, J., Jie, H.B., Lei, Y., et al. (2015) Pd-1/SHP-2 Inhibits Tc1/Th1 Phenotypic Responses and the Activation of t Cells in the Tumor Microenvironment. Cancer Research, 75, 508-518.
https://doi.org/10.1158/0008-5472.CAN-14-1215
[14]  Hui, E., Cheung, J., Zhu, J., et al. (2017) T Cell Costimulatory Receptor CD28 Is a Primary Target for PD-1-Mediated Inhibition. Science, 355, 1428-1433.
https://doi.org/10.1126/science.aaf1292
[15]  Tartaglia, M. and Gelb, B.D. (2005) Germ-Line and Somatic PTPN11 Mutations in Human Disease. European Journal of Medical Genetics, 48, 81-96.
https://doi.org/10.1016/j.ejmg.2005.03.001
[16]  Mohi, M.G. and Neel, B.G. (2007) The Role of Shp2 (PTPN11) in Cancer. Current Opinion in Genetics & Development, 17, 23-30.
https://doi.org/10.1016/j.gde.2006.12.011
[17]  Qiu, W., Wang, X., Romanov, V., et al. (2014) Structural Insights into Noonan/Leopard Syndrome-Related Mutants of Protein-Tyrosine Phosphatase SHP2 (PTPN11). BMC Structural Biology, 14, Article No. 10.
https://doi.org/10.1186/1472-6807-14-10
[18]  Yuan, X., Bu, H., Zhou, J., Yang, C.Y., et al. (2020) Recent Ad-vances of shp2 Inhibitors in Cancer Therapy: Current Development and Clinical Application. Journal of Medicinal Chemistry, 63, 11368-11396.
https://doi.org/10.1021/acs.jmedchem.0c00249
[19]  Fodor, M., Price, E., Wang, P., et al. (2018) Dual Allosteric Inhibition of shp2 Phosphatase. ACS Chemical Biology, 13, 647-656.
https://doi.org/10.1021/acschembio.7b00980
[20]  Butterworth, S., Overduin, M. and Barr, A.J. (2014) Targeting Protein Tyrosine Phosphatase SHP2 for Therapeutic Intervention. Future Medicinal Chemistry, 6, 1423-1437.
https://doi.org/10.4155/fmc.14.88
[21]  (2021) Dose Finding Study of TNO155 in Adult Patients with Advanced Solid Tumors. https://clinicaltrials.gov/ct2/show/NCT03114319
[22]  (2021) Dose-Escalation and Dose-Expansion of RMC-4630 and Cobimetinib in Relapsed/Refractory Solid Tumors. https://clinicaltrials.gov/ct2/show/NCT03989115
[23]  (2021) A First in Human, Dose Escalation Study of JAB-3068 (SHP2 Inhibitor) in Adult Patients with Advanced Solid Tumors. https://clinicaltrials.gov/ct2/show/NCT03518554
[24]  Sarver, P., Acker, M., Bagdanoff, J.T., et al. (2019) 6-Amino-3-Methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors. Journal of Medicinal Chemistry, 62, 1793-1802.
https://doi.org/10.1021/acs.jmedchem.8b01726
[25]  Wu, X., Xu, G., Li, X., Xu, W., et al. (2019) Small Molecule Inhibitor That Stabilizes the Autoinhibited Conformation of the Oncogenic Tyrosine Phosphatase SHP2. Journal of Me-dicinal Chemistry, 62, 1125-1137.
https://doi.org/10.1021/acs.jmedchem.8b00513
[26]  Pádua, R.A.P., Sun, Y., Marko, I., et al. (2018) Mechanism of Activating Mutations and Allosteric Drug Inhibition of the Phosphatase SHP2. Nature Communication, 9, Article No. 4507.
https://doi.org/10.1038/s41467-018-06814-w
[27]  Xie, J., Si, X., Gu, S., et al. (2017) Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment. Journal of Medicinal Chemistry, 60, 10205-10219.
https://doi.org/10.1021/acs.jmedchem.7b01520
[28]  Wang, R.R., Liu, W.S., Zhou, L., et al. (2019) Probing the Acting Mode and Advantages of RMC-4550 as an Src-Homology 2 Domain-Containing Protein Tyrosine Phosphatase (SHP2) Inhibitor at Molecular Level through Molecular Docking and Molecular Dynamics. Journal of Biomolecular Structure and Dynamics, 38, 1525-1538.
https://doi.org/10.1080/07391102.2019.1613266
[29]  Wang, W., Luo, H., Gao, Y., et al. (2016) Synthesis of Ar-omatic Amide Derivatives and Their Biological Evaluation against Protein Tyrosine Phosphatase 1B and Scr Homology-2 Domain Containing Protein Tyrosine Phosphatase-2. Chinese Journal of Organic Chemistry, 36, 2142-2149.
https://doi.org/10.6023/cjoc201603045

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133