|
Pure Mathematics 2021
具有Hardy项的半线性椭圆方程正径向对称解的存在性
|
Abstract:
[1] | Joseph, D.D. and Lundgren, T.S. (1973) Quasilinear Dirichlet Problems Driven by Positive Sources. Archive for Ra-tional Mechanics and Analysis, 49, 241-269. https://doi.org/10.1007/BF00250508 |
[2] | Brezis, H. and Nirenberg, L. (2010) Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents. Communications on Pure & Applied Mathematics, 36, 437-477. https://doi.org/10.1002/cpa.3160360405 |
[3] | Ekeland, I. and Ghoussoub. N. (2002) Selected New Aspects of the Calculus of Variations in the Large. Bulletin of the American Mathematical Society, 39, 207-265. https://doi.org/10.1090/S0273-0979-02-00929-1 |
[4] | Lieb, E.H. (1983) Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Annals of Mathematics, 118, 349-374. https://doi.org/10.2307/2007032 |
[5] | Cao, D. and Peng, S. (2006) Asymptotic Behavior for Elliptic Problems with Singular Coefficient and Nearly Critical Sobolev Growth. Annali di Matematicapura ed Applicata, 185, 189-205. https://doi.org/10.1007/s10231-005-0150-z |
[6] | Chou, K.S. and Chu, C.W. (1993) On the Best Constant for a Weighted Sobolev-Hardy Inequality. Journal of the London Mathematical Society, 48, 137-151. https://doi.org/10.1112/jlms/s2-48.1.137 |
[7] | Catrina, F. and Wang, Z.Q. (2001) On the Caffarelli-Kohn-Nirenberg Inequalities: Sharp Constants, Existence (and Nonexistence), and Symmetry of Extremal Functions. Communications on Pure and Applied Mathematics, 54, 229-258. https://doi.org/10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I |
[8] | Struwe, M. (2008) Variational Methods. 4th Edition, Springer, Berlin Heidelberg. |
[9] | Lin, C.S., Ni, W.M. and Takagi, I. (1988) Large Amplitude Stationary Solutions to a Chemotaxis System. Journal of Differential Equations, 72, 1-27. https://doi.org/10.1016/0022-0396(88)90147-7 |
[10] | Dupaigne, L. (2002) A Nonlinear Elliptic PDE with the In-verse-Square Potential. Journal D’analyse Mathématique, 86, 359-398. https://doi.org/10.1007/BF02786656 |