全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有Hardy项的半线性椭圆方程正径向对称解的存在性
Existence of Positive Radial Symmetric Solutions for Semilinear Elliptic Equation with Hardy Exponent

DOI: 10.12677/PM.2021.113045, PP. 336-345

Keywords: Hardy-Sobolev临界指数,山路引理,Moser迭代,比较原理
Hardy-Sobolev Critical Exponent
, Mountain Pass Lemma, Moser Iteration, Comparison Principle

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究了以下具有Dirichlet边界条件的椭圆方程在BR(0)中正径向对称解的存在性:\"\",u>0。其中\"\"??\"\" 且2*(a,s)是临界指数。我们主要利用山路引理、Moser迭代和比较原理证明该方程正径向对称解的存在性。
In this paper, we study the existence of positive radial symmetric solutions of \"\"
, u>0 in BR(0) with Dirichlet boundary condition. Here, \"\"\"\" and 2*(a,s) is a critical exponent. We mainly prove the existence of positive radial symmetric solution of the equation by using the mountain pass lemma, Moser iteration and comparison principle.

References

[1]  Joseph, D.D. and Lundgren, T.S. (1973) Quasilinear Dirichlet Problems Driven by Positive Sources. Archive for Ra-tional Mechanics and Analysis, 49, 241-269.
https://doi.org/10.1007/BF00250508
[2]  Brezis, H. and Nirenberg, L. (2010) Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents. Communications on Pure & Applied Mathematics, 36, 437-477.
https://doi.org/10.1002/cpa.3160360405
[3]  Ekeland, I. and Ghoussoub. N. (2002) Selected New Aspects of the Calculus of Variations in the Large. Bulletin of the American Mathematical Society, 39, 207-265.
https://doi.org/10.1090/S0273-0979-02-00929-1
[4]  Lieb, E.H. (1983) Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Annals of Mathematics, 118, 349-374.
https://doi.org/10.2307/2007032
[5]  Cao, D. and Peng, S. (2006) Asymptotic Behavior for Elliptic Problems with Singular Coefficient and Nearly Critical Sobolev Growth. Annali di Matematicapura ed Applicata, 185, 189-205.
https://doi.org/10.1007/s10231-005-0150-z
[6]  Chou, K.S. and Chu, C.W. (1993) On the Best Constant for a Weighted Sobolev-Hardy Inequality. Journal of the London Mathematical Society, 48, 137-151.
https://doi.org/10.1112/jlms/s2-48.1.137
[7]  Catrina, F. and Wang, Z.Q. (2001) On the Caffarelli-Kohn-Nirenberg Inequalities: Sharp Constants, Existence (and Nonexistence), and Symmetry of Extremal Functions. Communications on Pure and Applied Mathematics, 54, 229-258.
https://doi.org/10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
[8]  Struwe, M. (2008) Variational Methods. 4th Edition, Springer, Berlin Heidelberg.
[9]  Lin, C.S., Ni, W.M. and Takagi, I. (1988) Large Amplitude Stationary Solutions to a Chemotaxis System. Journal of Differential Equations, 72, 1-27.
https://doi.org/10.1016/0022-0396(88)90147-7
[10]  Dupaigne, L. (2002) A Nonlinear Elliptic PDE with the In-verse-Square Potential. Journal D’analyse Mathématique, 86, 359-398.
https://doi.org/10.1007/BF02786656

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133