%0 Journal Article %T 具有Hardy项的半线性椭圆方程正径向对称解的存在性
Existence of Positive Radial Symmetric Solutions for Semilinear Elliptic Equation with Hardy Exponent %A 李时雨 %J Pure Mathematics %P 336-345 %@ 2160-7605 %D 2021 %I Hans Publishing %R 10.12677/PM.2021.113045 %X
本文主要研究了以下具有Dirichlet边界条件的椭圆方程在BR(0)中正径向对称解的存在性:\"\",u>0。其中\"\"  \"\" 且2*(a,s)是临界指数。我们主要利用山路引理、Moser迭代和比较原理证明该方程正径向对称解的存在性。
In this paper, we study the existence of positive radial symmetric solutions of \"\"
, u>0 in BR(0) with Dirichlet boundary condition. Here, \"\"\"\" and 2*(a,s) is a critical exponent. We mainly prove the existence of positive radial symmetric solution of the equation by using the mountain pass lemma, Moser iteration and comparison principle.
%K Hardy-Sobolev临界指数,山路引理,Moser迭代,比较原理
Hardy-Sobolev Critical Exponent %K Mountain Pass Lemma %K Moser Iteration %K Comparison Principle %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=41186