全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石英纤维/含硅芳炔复合材料的制备与性能
Preparation and Performance of Quartz Fiber/Silicon-Containing Arylacetylene Composites

DOI: 10.12677/MS.2021.113033, PP. 271-280

Keywords: 含硅芳炔,模压成型,介电性能,力学性能,耐热性能
Silicon-Containing Arylacetylene
, Compression Molding Process, Dielectric Properties, Mechanical Properties, Heat-Resistance Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用DSC、FTIR、TG和流变仪对含硅芳炔树脂(PSA)的固化反应特性、热稳定性以及流变性能进行了表征和分析。以石英纤维(QF)为增强体,采用模压成型工艺制备了QF/PSA复合材料。研究了树脂含量、成型压力、固化温度等不同工艺参数对QF/PSA复合材料力学性能的影响,在此基础上确定了复合材料的成型工艺参数:树脂含量30%,成型压力3.0~4.0 MPa,固化温度为250℃。考察了QF/PSA复合材料300℃和500℃高温下的力学强度以及复合材料在RT-500℃和7~18GHz范围内的介电性能。结果表明,PSA树脂5%热失重温度(Td5)为600℃,10%热失重温度(Td10)为715℃,800℃残炭率为86.3%。所得QF/PSA复合材料具有良好的高温力学性能:300℃下力学强度保持率高于69%,500℃下力学强度保持率高于51%。QF/PSA复合材料在RT~500℃和7~18 GHz的宽频范围内具有稳定的介电常数和介电损耗。
The curing reaction characteristics, thermal stability and rheological Properties of Silicon-con- taining Arylacetylene resin (PSA) were characterized and analyzed by DSC, FTIR, TG and rheome-ter. The QF/PSA composites were prepared by compression molding process with Quartz Fiber (QF) as reinforcement. The effects of different process parameters (resin content, molding pres-sure, curing temperature) on mechanical properties of QF/PSA composites were studied as follows: the resin content 30%, the molding pressure 3.0~4.0 MPa, curing temperature 250?C. On this basis, the molding process system of composites was determined. The mechanical strength of QF/PSA composites at 300℃and 500℃and the dielectric properties of the composites in the range of RT-500℃and 7~18GHz were investigated. According to the results, the decomposition temperature of 5% loss (Td5) and the decomposition temperature of 10% loss (Td10) of the cured PSA are 600?C and 715?C, and its residue rate is up to 86.3% at 800?C. The prepared QF/PSA composites exhibit excellent high temperature mechanical properties: the retention rate of mechanical strength at 300?C is above 69% and the retention rate of mechanical strength at 500?C is above 51%. QF/PSA composites show stable dielectric constant and dielectric loss in the temperature range from room temperature to 500?C and the broad frequency from7GHz to 18 GHz.

References

[1]  Ogasawara, T., Ishikawa, T., Yamada, T., et al. (2002) Thermal Response and Ablation Characteristics of Carbon Fiber Reinforced Composite with Novel Silicon Containing Polymer MSP. Journal of Composite Materials, 36, 143-157.
https://doi.org/10.1177/0021998302036002554
[2]  步晓君, 周燕, 黄发荣. 含柔性链端炔基POSS(POSS-LA)的合成及对含硅芳炔树脂的改性[J]. 高分子材料科学与工程, 2017, 33(6): 24-29.
[3]  周晓辉, 黄发荣, 唐均坤, 等. 耐高温端乙炔基聚醚酰亚胺改性含硅芳炔树脂[J]. 功能高分子学报, 2017, 30(3): 296-305.
[4]  Xu, J.F., Wang, C.Y. and Lai, G.Q. (2007) Synthesis and Characterization of Phenylacethynylene-Terminated Poly(silyle- neethynylene-4, 4-pheylethereneethynylene)s. European Polymer Journal, 43, 668-672.
https://doi.org/10.1016/j.eurpolymj.2006.11.006
[5]  益小苏. 先进复合材料技术研究与发展[M]. 北京: 国防工业出版社, 2006: 4-85.
[6]  汤乐旻, 周燕, 田鑫, 等. 改性含硅芳炔树脂及其复合材料性能研究[J]. 玻璃钢/复合材料, 2012(6): 41-46.
[7]  秦伟, 张志谦, 吴晓宏, 等. RTM成型复合材料的界面改性[J]. 高分子材料科学与工程, 2003, 19(6): 207-208.
[8]  Tseng, W.C., Chen, Y. and Chang, G.W. (2009) Curing Conditions of Polyarylacetylene Prepolymers to Obtain Thermally. Polymer Degradation and Stability, 94, 2149-2156.
https://doi.org/10.1016/j.polymdegradstab.2009.09.008
[9]  杨涛, 张朋, 董波涛. 热固性聚酰亚胺树脂基复合材料的增韧改性研究进展[J]. 航空制造技术, 2019, 62(10): 66-72.
[10]  Jiang, Z.X., Cheng, X.Q., Li, W.J., et al. (2012) A Simple Method to Prepare Miniature Quartz Fiber Boats with Superhydrophobicity. Applied Surface Science, 258, 2038-2042.
https://doi.org/10.1016/j.apsusc.2011.04.108
[11]  王沪东, 郭康康, 周晖, 等. 聚硼硅氮烷杂化芳炔基树脂制备及抗热氧化性能[J]. 复合材料学报, 2016, 33(5): 962-969.
[12]  Bureau, M. and Denaul, J. (2004) Fatigue Resistance of Continuous Glass Fiber/Polypropylene Composites Consolidation Dependence. Composites Science and Technology, 64, 1785-1794.
https://doi.org/10.1016/j.compscitech.2004.01.016
[13]  Wang, L., Shi, Y., Sa, R., et al. (2016) Surface Modification of Aramid Fibers by Catechol/Polyamine Codeposition Followed by Silane Grafting for Enhanced Interfacial Adhesion to Rubber Matrix. Industrial &Engineering Chemistry Research, 55, 12547-12556.
https://doi.org/10.1021/acs.iecr.6b03177
[14]  Cui, H.Y. and Kessler, M.R. (2012) Glass Fiber Reinforced ROMP-Based Bio-Renewable Polymers: Enhancement of the Interface with Silane Coupling Agents. Composites Sciences and Technology, 72, 1264-1272.
https://doi.org/10.1016/j.compscitech.2012.04.013
[15]  梁秀华, 扈艳红, 杜磊, 等. 异氰酸酯基硅烷偶联剂改性石英纤维/含硅芳炔复合材料表面[J]. 玻璃钢/复合材料, 2013(8): 44-50.
[16]  王林靖, 扈艳红, 杜磊, 等. 乙炔基芳酰胺酸硅烷改进石英纤维/含硅芳炔复合材料高温界面性能[J]. 复合材料学报, 2016, 33(2): 287-296.
[17]  高金淼, 齐会民, 张健, 等. 新型含硅芳炔树脂及其复合材料性能[J]. 化工新型材料, 2008, 36(12): 45-47.
[18]  徐彬, 周权, 倪礼忠. 等. 硅烷杂化树脂及其复合材料的性能[J]. 功能高分子学报, 2012, 25(2): 145-151.
[19]  全国纤维增强塑料标准化技术委员会. GB/T1447-2005纤维增强塑料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2005.
[20]  全国纤维增强塑料标准化技术委员会. GB/T1449-2005纤维增强塑料弯曲性能试验方法[S]. 北京: 中国标准出版社, 2005.
[21]  全国纤维增强塑料标准化技术委员会. GB/T1450. 1-2005纤维增强塑料层间剪切性能试验方法[S]. 北京: 中国标准出版社, 2005.
[22]  全国纤维增强塑料标准化技术委员会. GB/T9979-2005纤维增强塑料层间剪切性能试验方法[S]. 北京: 中国标准出版社, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133