全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

余切群胚的辛约化
Symplectic Reduction for Cotangent Groupoids

DOI: 10.12677/PM.2021.113043, PP. 323-329

Keywords: 李群胚,辛流形,辛群胚,余切群胚,辛约化
Lie Groupoid
, Symplectic Manifold, Symplectic Groupoid, Cotangent Groupoid, Symplectic Reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

给定李群胚\"\"以及I-空间N,本文考虑了余切群胚\"\"在余切丛TN上的辛群胚作用,并给出了辛约化的具体表示。
Given a Lie groupoid \"\"?and I-space N, this paper considers symplectic groupoid actions of the cotangent groupoid \"\"?on the cotangent bundle TN. Meanwhile, this reduction is investigated concretely.

References

[1]  Arnold, V. (1966) Sur la gèométrie diffèrentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’Institut Fourier, 16, 319-361.
https://doi.org/10.5802/aif.233
[2]  Smale, S. (1970) Topology and Mechanics. I. Inventiones Mathematicae, 10, 305-331.
https://doi.org/10.1007/BF01418778
[3]  Meyer, K.R. (1973) Symmetries and Integrals in Mathematics. Dy-namical Systems, Academic Press, New York, 259-272.
https://doi.org/10.1016/B978-0-12-550350-1.50025-4
[4]  Marsden, J. and Weinstein, A. (1974) Reduction of Symplectic Manifolds with Symmetry. Reports on Mathematical Physics, 5, 121-130.
https://doi.org/10.1016/0034-4877(74)90021-4
[5]  Marsden, J.E., Misiolek, G., Ortega, J.P., et al. (2007) Ham-iltonian Reduction by Stages. Springer, New York, 1-64.
[6]  Mackenzie, K.C.H. (2005) General Theory of Lie Groupoids and Lie Algebroids. Cambridge University Press, New York.
https://doi.org/10.1017/CBO9781107325883
[7]  da Silva, A.C. (2008) Lectures on Symplectic Geometry. Springer, New York, 7-22.
https://doi.org/10.1007/978-3-540-45330-7
[8]  Mikami, K. and Weinstein, A. (1988) Moments and Reduction for Symplectic Groupoids. Publications of the Research Institute for Mathematical Sciences, 24, 121-140.
https://doi.org/10.2977/prims/1195175328

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133