全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有临界增长的分数阶带有磁场的SchrO¨dinger方程解的多重性
Multiplicity for FractionalSchrO¨dinger Equation with Magnetic Fields and Critical Growth

DOI: 10.12677/PM.2021.114066, PP. 527-538

Keywords: 分数阶磁拉普拉斯,临界,Ljusternik-Schnirelmann理论,多重性
Fractional Magnetic Laplacian
, Critical, Ljusternik-Schnirelmann Theory, Multiplicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了下列具有临界增长的含磁场的分数阶Schr?dinger方程解的多重性 \"\"其中ε > 0 是参数,s∈(0,1),N≥3 ,(-Δ)As 是分数阶的磁拉普拉斯算子,V∈C(?N ,?)和A∈C0,α (?N,?N),α∈(0,1]是磁位势。在V的局部条件下以及ε充分小时,本文利用变分方法、截断技巧、Nehari流形方法和Ljusternik-Schnirelmann理论得到了上述方程解的多重性。
In this paper, we investigate the multiplicity for fractional Schr?dinger equation with magnetic fields and critical growth \"\"where ε > 0 is a parameter, s∈(0,1) , N ≥ 3 ,(-Δ)As is the fractional magnetic Laplacian operators,V ∈C (?N ,?) and A∈C0,α (?N,?N),α ∈(0,1] is magnetic potential.Under a local condition on the potential V and ε is sufficiently small, we obtain some multiplicity results by variational methods, truncated techniques, Nehari manifold method and the Ljusternik-Schnirelmann theory.

References

[1]  Griffiths, D. (2004) Introduction to Quantum Mechanics. 2nd Edition, Prentice Hall, Upper Saddle River, 1-2.
[2]  毛安民, 李安然. 薛定谔方程及薛定谔-麦克斯韦方程的多解[J]. 数学学报, 2012, 55(3): 425-436.
[3]  d’Avenia, P. and Squassina, M. (2018) Ground States for Fractional Magnetic Operators. ESAIM: Control, Optimisation and Calculus of Variations, 24, 1-24.
https://doi.org/10.1051/cocv/2016071
[4]  Zhang, B., Squassina, M. and Zhang, X. (2017) Fractional NLS Equations with Magnetic Field, Critical Frequency and Critical Growth. Manuscripta Mathematica, 155, 115-140.
https://doi.org/10.1007/s00229-017-0937-4
[5]  Rabinowitz, P. (1992) On a Class of Nonlinear Schr?dinger Equations. ZAMP, 43, 270-291.
https://doi.org/10.1007/BF00946631
[6]  Ambrosio, V. (2019) Existence and Concentration Results for Some Fractional Schr?dinger Equations in RN with Magnetic Fields. Communications in Partial Differential Equations, 44, 637-680.
https://doi.org/10.1080/03605302.2019.1581800
[7]  Alves, C.O., Figueiredo, G.M. and Furtado, M.F. (2011) Multiple Solutions for a Nonlinear Schr?dinger Equation with Magnetic Fields. Communications in Partial Differential Equations, 36, 1565-1586.
https://doi.org/10.1080/03605302.2011.593013
[8]  Figueiredo, G.M. and Siciliano, G. (2016) A Multiplicity Result via Ljusternik-Schnirelmann Category and Morse Theory for a Fractional Schr?dinger Equation in RN. Nonlinear Differential Equations and Applications, 23, 12.
https://doi.org/10.1007/s00030-016-0355-4
[9]  Ambrosio, V. (2017) Multiplicity of Positive Solutions for a Class of Fractional Schr?dinger Equations via Penalization Method. Annali di Matematica Pura ed Applicata, 196, 1-20.
https://doi.org/10.1007/s10231-017-0652-5
[10]  Ambrosio, V. and d’Avenia, P. (2018) Nonlinear Fractional Magnetic Schr?dinger Equation: Existence and Multiplicity. Journal of Differential Equations, 264, 3336-3368.
https://doi.org/10.1016/j.jde.2017.11.021
[11]  Ambrosio, V. (2018) Multiplicity and Concentration Results for Fractional Schr?dinger-Poisson Equations with Magnetic Fields and Critical Growth. Potential Analysis, 52, 565-600.
https://doi.org/10.1007/s11118-018-9751-1
[12]  Ji, C. and Vicentiu, D. (2020) Multiplicity and Concentration of Solutions to the Nonlinear Magnetic Schr?dinger Equation. Calculus of Variations and Partial Differential Equations, 59, 115.
https://doi.org/10.1007/s00526-020-01772-y
[13]  Chang, K.C. (2005) Methods in Nonlinear Analysis. Springer-Verlag, Berlin.
[14]  Willem, M. (1996) Minimax Theorems Progress in Nonlinear Differential Equations and Their Applications. Vol. 24, Birkhauser, Boston.
[15]  Cingolani, S. and Lazzo, M. (1997) Multiple Semi-Classical Standing Waves for a Class of Nonlinear Schr?dinger Equations. Topological Methods in Nonlinear Analysis, 10, 1-13.
https://doi.org/10.12775/TMNA.1997.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133