本文研究了下列具有临界增长的含磁场的分数阶Schr?dinger方程解的多重性

其中ε > 0 是参数,s∈(0,1),N≥3 ,(-Δ)
As 是分数阶的磁拉普拉斯算子,V∈C(?
N ,?)和A∈C
0,α (?
N,?
N),α∈(0,1]是磁位势。在V的局部条件下以及ε充分小时,本文利用变分方法、截断技巧、Nehari流形方法和Ljusternik-Schnirelmann理论得到了上述方程解的多重性。
In this paper, we investigate the multiplicity for fractional Schr?dinger equation with magnetic fields and critical growth

where ε > 0 is a parameter, s∈(0,1) , N ≥ 3 ,(-Δ)
As is the fractional magnetic Laplacian operators,V ∈C (?
N ,?) and A∈C
0,α (?
N,?
N),α ∈(0,1] is magnetic potential.Under a local condition on the potential V and ε is sufficiently small, we obtain some multiplicity results by variational methods, truncated techniques, Nehari manifold method and the Ljusternik-Schnirelmann theory.
%K 分数阶磁拉普拉斯,临界,Ljusternik-Schnirelmann理论,多重性