%0 Journal Article %T 具有临界增长的分数阶带有磁场的SchrO¨dinger方程解的多重性
Multiplicity for FractionalSchrO¨dinger Equation with Magnetic Fields and Critical Growth %A 姚安妮 %J Pure Mathematics %P 527-538 %@ 2160-7605 %D 2021 %I Hans Publishing %R 10.12677/PM.2021.114066 %X
本文研究了下列具有临界增长的含磁场的分数阶Schr?dinger方程解的多重性 \"\"其中ε > 0 是参数,s∈(0,1),N≥3 ,(-Δ)As 是分数阶的磁拉普拉斯算子,V∈C(?N ,?)和A∈C0,α (?N,?N),α∈(0,1]是磁位势。在V的局部条件下以及ε充分小时,本文利用变分方法、截断技巧、Nehari流形方法和Ljusternik-Schnirelmann理论得到了上述方程解的多重性。
In this paper, we investigate the multiplicity for fractional Schr?dinger equation with magnetic fields and critical growth \"\"where ε > 0 is a parameter, s∈(0,1) , N ≥ 3 ,(-Δ)As is the fractional magnetic Laplacian operators,V ∈C (?N ,?) and A∈C0,α (?N,?N),α ∈(0,1] is magnetic potential.Under a local condition on the potential V and ε is sufficiently small, we obtain some multiplicity results by variational methods, truncated techniques, Nehari manifold method and the Ljusternik-Schnirelmann theory.
%K 分数阶磁拉普拉斯,临界,Ljusternik-Schnirelmann理论,多重性
Fractional Magnetic Laplacian %K Critical %K Ljusternik-Schnirelmann Theory %K Multiplicity %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=41659