全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

旋转势阱耦合下孤子的研究
Study on Solitons Coupled by Rotating Potential Well

DOI: 10.12677/PM.2021.114065, PP. 516-526

Keywords: 孤子,三阶非线性,螺旋单势阱耦合,二分量
Soliton
, Cubic Nonlinearity, Helical Single Well Coupling, Two Components

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究的对象为二分量薛定谔方程,在三次非线性自吸引作用下,我们引进了一种特殊耦合作用——螺旋势阱,二分量间呈螺旋形式进行耦合。通过计算,我们得到了系统三种稳定模式的孤子,分别为L孤子、M孤子和R孤子。我们发现,通过调节旋转速度可以切换孤子的模式。同时,我们还探讨了旋转速度及分量耦合强度对孤子波函数及孤子分布的影响。
In this paper, we study the two-component Schr?dinger equation. Under the cubic nonlinear self attraction, we introduce a special coupling action spiral potential well. The two components are coupled in spiral form. Through calculation, we get three stable mode solitons of the system, which are L soliton, M soliton and R soliton. We find that the mode of soliton can be switched by adjusting the rotation speed. At the same time, we also discuss the influence of rotational velocity and component coupling strength on the soliton wave function and soliton distribution.

References

[1]  Korteweg, D.J. and De Vries, G. (2011) On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. Philosophical Magazine, 91, 1007-1028.
https://doi.org/10.1080/14786435.2010.547337
[2]  Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y. and Salomon, C. (2002) Formation of a Matter-Wave Bright Soliton. Science, 296, 1290-1293.
https://doi.org/10.1126/science.1071021
[3]  Chiao, R.Y. and Wu, Y.S. (1986) Manifestations of Berry’s Topological Phase for the Photon. Physical Review Letters, 57, 933-936.
https://doi.org/10.1103/PhysRevLett.57.933
[4]  Tomita, A. and Chiao, R.Y. (1986) Observation of Berry’s Topological Phase by Use of an Optical Fiber. Physical Review Letters, 59, 937-940.
https://doi.org/10.1103/PhysRevLett.57.937
[5]  Ornigotti, M., Valle, G.D., Gatti, D., et al. (2007) Topological Suppression of Optical Tunneling in a Twisted Annular Fiber. Physical Review A, 76, Article ID: 023833.
https://doi.org/10.1103/PhysRevA.76.023833
[6]  Kanamoto, R., Carr, L.D. and Ueda, M. (2008) Topological Winding and Unwinding in Metastable Bose-Einstein Condensates. Physical Review Letters, 100, Article ID: 060401.
https://doi.org/10.1103/PhysRevLett.100.060401
[7]  Guo, H., Chen, Z., Liu, J., et al. (2014) Fundamental Modes in a Waveguide Pipe Twisted by Inverted Nonlinear Double-Well Potential. Laser Physics, 24, Article ID: 045403.
https://doi.org/10.1088/1054-660X/24/4/045403
[8]  Li, Y.Y., Pang, W. and Malomed, B.A. (2014) Wave Modes Trapped in Rotating Nonlinear Potentials. In: Localized Excitations in Nonlinear Complex Systems, Springer International Publishing, Berlin, 171-192.
https://doi.org/10.1007/978-3-319-02057-0_8
[9]  Li, Y.Y., Pang, W. and Malomed, B.A. (2012) Nonlinear Modes and Symmetry Breaking in Rotating Double-Well Potentials. Physical Review A, 86, 94-101.
https://doi.org/10.1103/PhysRevA.86.023832
[10]  Chen, G.H., Wang, H.C., Chen, Z.P., et al. (2016) Fundamental Modes in Waveguide Pipe Twisted by Saturated Double-Well Potential. Frontiers of Physics, 12, Article ID: 124201.
https://doi.org/10.1007/s11467-016-0601-6
[11]  Luo, Z.H., Li, Y.Y., Pang, W., Liu, Y. and Wang, X.J. (2013) Double Symmetry Breaking of Modes in Dual-Core Rotating System. Journal of the Physical Society of Japan, 82, Article ID: 124401.
https://doi.org/10.7566/JPSJ.82.124401
[12]  Luo, W., Chen, Z., Zou, Z., Luo, Z., et al. (2019) Symmetry and Asymmetry Nonlinear Modes in Dual Cylinder Waveguide Shells Coupled by a Rotating Double-Well Connection. Journal of Nonlinear Optical Physics & Materials, 28, Article ID: 1850039.
https://doi.org/10.1142/S021886351850039X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133