%0 Journal Article %T 旋转势阱耦合下孤子的研究
Study on Solitons Coupled by Rotating Potential Well %A 张泽贤 %A 骆伟文 %J Pure Mathematics %P 516-526 %@ 2160-7605 %D 2021 %I Hans Publishing %R 10.12677/PM.2021.114065 %X
本文研究的对象为二分量薛定谔方程,在三次非线性自吸引作用下,我们引进了一种特殊耦合作用——螺旋势阱,二分量间呈螺旋形式进行耦合。通过计算,我们得到了系统三种稳定模式的孤子,分别为L孤子、M孤子和R孤子。我们发现,通过调节旋转速度可以切换孤子的模式。同时,我们还探讨了旋转速度及分量耦合强度对孤子波函数及孤子分布的影响。
In this paper, we study the two-component Schr?dinger equation. Under the cubic nonlinear self attraction, we introduce a special coupling action spiral potential well. The two components are coupled in spiral form. Through calculation, we get three stable mode solitons of the system, which are L soliton, M soliton and R soliton. We find that the mode of soliton can be switched by adjusting the rotation speed. At the same time, we also discuss the influence of rotational velocity and component coupling strength on the soliton wave function and soliton distribution.
%K 孤子,三阶非线性,螺旋单势阱耦合,二分量
Soliton %K Cubic Nonlinearity %K Helical Single Well Coupling %K Two Components %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=41655