|
抗生素替代疗法:噬菌体疗法
|
Abstract:
[1] | Doss, J., Culbertson, K., Hahn, D., Camacho, J. and Barekzi, N. (2017) A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses Basel, 9, E50. https://doi.org/10.3390/v9030050 |
[2] | Wahida, A., Ritter, K. and Horz, H.P. (2016) The Janus-Face of Bacteriophages across Human Body Habitats. PLOS Pathogens, 12, e1005634. https://doi.org/10.1371/journal.ppat.1005634 |
[3] | Mirzaei, M.K. and Maurice, C.F. (2017) Menage a Trois in the Human Gut: Interactions between Host, Bacteria and Phages. Nature Reviews Microbiology, 15, 397-408. https://doi.org/10.1038/nrmicro.2017.30 |
[4] | Barr, J.J., et al. (2013) Bacteriophage Adhering to Mucus Provide a Non-Host-Derived Immunity. Proceedings of the National Academy of Sciences of the United States of America, 110, 10771-10776.
https://doi.org/10.1073/pnas.1305923110 |
[5] | Duerkop, B.A. and Hooper, L.V. (2013) Resident Viruses and Their Interactions with the Immune System. Nature Immunology, 14, 654-659. https://doi.org/10.1038/ni.2614 |
[6] | Huse, S.M., et al. (2008) Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLOS Genetics, 4, e1000255. https://doi.org/10.1371/journal.pgen.1000255 |
[7] | Barr, J.J., Youle, M. and Rohwer, F. (2013) Innate and Acquired Bacteriophage-Mediated Immunity. Bacteriophage, 3, e25857. https://doi.org/10.4161/bact.25857 |
[8] | Verbeken, G., et al. (2007) European Regulatory Conundrum of Phage Therapy. Future Microbiology, 2, 485-491.
https://doi.org/10.2217/17460913.2.5.485 |
[9] | Shigenobu, M., et al. (2005) Bacteriophage Therapy: A Revitalized Therapy against Bacterial Infectious Diseases. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 11, 211-219.
https://doi.org/10.1007/s10156-005-0408-9 |
[10] | Viertel, T.M., Ritter, K. and Horz, H.P. (2014) Viruses versus Bacteria-Novel Approaches to Phage Therapy as a Tool against Multidrug-Resistant Pathogens. Journal of Antimicrobial Chemotherapy, 69, 2326-2336.
https://doi.org/10.1093/jac/dku173 |
[11] | O’Flaherty, S., Ross, R.P. and Coffey, A. (2009) Bacteriophage and Their Lysins for Elimination of Infectious Bacteria. FEMS Microbiology Reviews, 33, 801-819. https://doi.org/10.1111/j.1574-6976.2009.00176.x |
[12] | Wittebole, X., De Roock, S. and Opal, S.M. (2014) A Historical Overview of Bacteriophage Therapy as an Alternative to Antibiotics for the Treatment of Bacterial Pathogens. Virulence, 5, 226-235. https://doi.org/10.4161/viru.25991 |
[13] | Sylwia, P., Magdalena, K., Romuald, G., Lidia, M. and Anna, M. (2014) Bacteriophages as an Alternative Strategy for Fighting Biofilm Development. Polish Journal of Microbiology, 63, 137-145. https://doi.org/10.33073/pjm-2014-019 |
[14] | Ul, H.I., Nasir, C.W., Nadeem, A.M., Saadia, A. and Ishtiaq, Q. (2012) Bacteriophages and Their Implications on Future Biotechnology: A Review. Virology Journal, 9, 9. |
[15] | Schmelcher, M. and Loessner, M.J. (2014) Application of Bacteriophages for Detection of Foodborne Pathogens. Bacteriophage, 4, e28137. https://doi.org/10.4161/bact.28137 |
[16] | Clark, J.R. and March, J.B. (2006) Bacteriophages and Biotechnology: Vaccines, Gene Therapy and Antibacterials. Trends in Biotechnology, 24, 212-218. https://doi.org/10.1016/j.tibtech.2006.03.003 |
[17] | Shi, Y.B., et al. (2012) Characterization and Determination of Holin Protein of Streptococcus suis Bacteriophage SMP in Heterologous Host. Virology Journal, 9, Article No. 70. https://doi.org/10.1186/1743-422X-9-70 |
[18] | Wang, I.N., Smith, D.L. and Young, R. (2000) Holins: The Protein Clocks of Bacteriophage Infections. Annual Review of Microbiology, 54, 799-825. https://doi.org/10.1146/annurev.micro.54.1.799 |
[19] | Linden, S.B., et al. (2015) Biochemical and Biophysical Characterization of PlyGRCS, a Bacteriophage Endolysin Active against Methicillin-Resistant Staphylococcus aureus. Applied Microbiology and Biotechnology, 99, 741-752.
https://doi.org/10.1007/s00253-014-5930-1 |
[20] | Mapes, A.C., Trautner, B.W., Liao, K.S. and Bacteriophage, R.F.R.J. (2016) Development of Expanded Host Range Phage Active on Biofilms of Multi-Drug Resistant Pseudomonas aeruginosa. Bacteriophage, 6, e1096995.
https://doi.org/10.1080/21597081.2015.1096995 |
[21] | Hendrix, R.W., Smith, M.C.M., Burns, R.N., Ford, M.E. and Hatfull, G.F. (1999) Evolutionary Relationships among Diverse Bacteriophages and Prophages: All the World’s a Phage. Proceedings of the National Academy of Sciences of the United States of America, 96, 2192-2197. https://doi.org/10.1073/pnas.96.5.2192 |
[22] | Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.L. and Brussow, H. (2004) Phage-Host Interaction: An Ecological Perspective. Journal of Bacteriology, 186, 3677-3686. https://doi.org/10.1128/JB.186.12.3677-3686.2004 |
[23] | Yang, W., et al. (2016) Isolation, Phylogenetic Group, Drug Resistance, Biofilm Formation, and Adherence Genes of Escherichia coli from Poultry in Central China. Poultry Science, 95, 2895-2901. https://doi.org/10.3382/ps/pew252 |
[24] | Verma, V., Harjai, K. and Chhibber, S. (2010) Structural Changes Induced by a Lytic Bacteriophage Make Ciprofloxacin Effective against Older Biofilm of Klebsiella pneumoniae. Biofouling, 26, 729-737.
https://doi.org/10.1080/08927014.2010.511196 |
[25] | Bedi, M.S., Verma, V. and Chhibber, S. (2009) Amoxicillin and Specific Bacteriophage Can Be Used Together for Eradication of Biofilm of Klebsiella pneumoniae B5055. World Journal of Microbiology and Biotechnology, 25, 1145-1151. https://doi.org/10.1007/s11274-009-9991-8 |
[26] | Liu, M.S., et al. (2002) Reverse Transcriptase-Mediated Tropism Switching in Bordetella bacteriophage. Science, 295, 2091-2094. https://doi.org/10.1126/science.1067467 |
[27] | Yen, L., et al. (2004) Exogenous Control of Mammalian Gene Expression through Modulation of RNA Self-Cleavage. Nature, 431, 471-476. https://doi.org/10.1038/nature02844 |
[28] | Shinedling, S., et al. (1987) Wild-Type Bacteriophage T4 Is Restricted by the Lambda Rex Genes. Journal of Virology, 61, 3790-3794. https://doi.org/10.1128/JVI.61.12.3790-3794.1987 |
[29] | Drulis-Kawa, Z., Majkowska-Skrobek, G. and Maciejewska, B. (2015) Bacteriophages and Phage-Derived Proteins—Application Approaches. Current Medicinal Chemistry, 22, 1757-1773.
https://doi.org/10.2174/0929867322666150209152851 |
[30] | Yu, P., Mathieu, J., Li, M., Dai, Z. and Alvarez, P.J. (2016) Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Applied and Environmental Microbiology, 82, 808-815. https://doi.org/10.1128/AEM.02382-15 |
[31] | Zaczek, M., et al. (2016) Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Frontiers in Microbiology, 7, 1681. https://doi.org/10.3389/fmicb.2016.01681 |
[32] | Merabishvili, M., et al. (2009) Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials. PLoS ONE, 4, e4944. https://doi.org/10.1371/journal.pone.0004944 |
[33] | Cisek, A.A., Dabrowska, I., Gregorczyk, K.P. and Wyzewski, Z. (2017) Phage Therapy in Bacterial Infections Treatment: One Hundred Years after the Discovery of Bacteriophages. Current Microbiology, 74, 277-283.
https://doi.org/10.1007/s00284-016-1166-x |
[34] | Sulakvelidze, A., et al. (2001) Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy, 45, 649-659.
https://doi.org/10.1128/AAC.45.3.649-659.2001 |
[35] | Plociennikowska, A., Hromada-Judycka, A., Borzecka, K. and Kwiatkowska, K. (2015) Co-Operation of TLR4 and Raft Proteins in LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 72, 557-581.
https://doi.org/10.1007/s00018-014-1762-5 |
[36] | Lepper, P.M., et al. (2002) Clinical Implications of Antibiotic-Induced Endotoxin Release in Septic Shock. Intensive Care Medicine, 28, 824-833. https://doi.org/10.1007/s00134-002-1330-6 |
[37] | Dufour, N., Delattre, R., Ricard, J.D. and Debarbieux, L. (2017) The Lysis of Pathogenic Escherichia coli by Bacteriophages Releases Less Endotoxin Than by Beta-Lactams. Clinical Infectious Diseases, 64, 1582-1588.
https://doi.org/10.1093/cid/cix184 |
[38] | Zelasko, S., Gorski, A. and Dabrowska, K. (2017) Delivering Phage Therapy per os: Benefits and Barriers. Expert Review of Anti-Infective Therapy, 15, 167-179. https://doi.org/10.1080/14787210.2017.1265447 |
[39] | Brown, T.L., Petrovski, S., Dyson, Z.A., Seviour, R. and Tucci, J. (2016) The Formulation of Bacteriophage in a Semi Solid Preparation for Control of Propionibacterium acnes Growth. PLoS ONE, 11, e0151184.
https://doi.org/10.1371/journal.pone.0151184 |
[40] | Bodier-Montagutelli, E., et al. (2017) Inhaled Phage Therapy: A Promising and Challenging Approach to Treat Bacterial Respiratory Infections. Expert Opinion on Drug Delivery, 14, 959-972.
https://doi.org/10.1080/17425247.2017.1252329 |
[41] | Ooi, M.L., et al. (2019) Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngology—Head and Neck Surgery, 145, 723-729.
https://doi.org/10.1001/jamaoto.2019.1191 |
[42] | Nobrega, F.L., Costa, A.R., Kluskens, L.D. and Azeredo, J. (2015) Revisiting Phage Therapy: New Applications for Old Resources. Trends in Microbiology, 23, 185-191. https://doi.org/10.1016/j.tim.2015.01.006 |
[43] | Chan, B.K., et al. (2013) Phage Cocktails and the Future of Phage Therapy. Future Microbiology, 8, 769-783.
https://doi.org/10.2217/fmb.13.47 |
[44] | Keen, E.C., et al. (2017) Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation. mBio, 8, e02115-16. https://doi.org/10.1128/mBio.02115-16 |
[45] | Fancello, L., Desnues, C., Raoult, D. and Rolain, J.M. (2011) Bacteriophages and Diffusion of Genes Encoding Antimicrobial Resistance in Cystic Fibrosis Sputum Microbiota. Journal of Antimicrobial Chemotherapy, 66, 2448-2454.
https://doi.org/10.1093/jac/dkr315 |
[46] | Modi, S.R., Lee, H.H., Spina, C.S. and Collins, J.J. (2013) Antibiotic Treatment Expands the Resistance Reservoir and Ecological Network of the Phage Metagenome. Nature, 499, 219-222. https://doi.org/10.1038/nature12212 |
[47] | Kim, K.P., et al. (2008) PEGylation of Bacteriophages Increases Blood Circulation Time and Reduces T-Helper Type 1 Immune Response. Microbial Biotechnology, 1, 247-257. https://doi.org/10.1111/j.1751-7915.2008.00028.x |
[48] | Vitiello, C.L., Merril, C.R. and Adhya, S. (2005) An Amino Acid Substitution in a Capsid Protein Enhances Phage Survival in Mouse Circulatory System More than a 1000-Fold. Virus Research, 114, 101-103.
https://doi.org/10.1016/j.virusres.2005.05.014 |
[49] | Singla, S.i, Harjai, K., Katare, O.P. and Chhibber, S. (2015) Bacteriophage-Loaded Nanostructured Lipid Carrier: Improved Pharmacokinetics Mediates Effective Resolution of Klebsiella pneumoniae-Induced Lobar Pneumonia. The Journal of Infectious Diseases, 212, 325-334. |
[50] | Ando, H., Lemire, S., Pires, D.P. and Lu, T.K. (2015) Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1, 187-196. https://doi.org/10.1016/j.cels.2015.08.013 |
[51] | Lemon, D.J., et al. (2019) Construction of a Genetically Modified T7Select Phage System to Express the Antimicrobial Peptide 1018. Journal of Microbiology, 57, 532-538. https://doi.org/10.1007/s12275-019-8686-6 |
[52] | Faezeh, M., John, S.A., Keiko, Y., Toshiya, O. and Yasunori, T. (2009) Site-Specific Recombination of T2 Phage Using IP008 Long Tail Fiber Genes Provides a Targeted Method for Expanding Host Range While Retaining Lytic Activity. FEMS Microbiology Letters, 295, 211-217. https://doi.org/10.1111/j.1574-6968.2009.01588.x |
[53] | Young, R. and Bl?si, U. (1995) Holins: Form and Function in Bacteriophage Lysis. FEMS Microbiology Reviews, 17, 191-205. https://doi.org/10.1111/j.1574-6976.1995.tb00202.x |
[54] | Rietsch, A. and Bl?si, U. (1993) Non-Specific Hole Formation in the Escherichia coli Inner Membrane by Lambda S Proteins in Independent of Cellular secY and secA Functions and of the Proportion of Membrane Acidic Phospholipids. FEMS Microbiology Letters, 107, 101-105. https://doi.org/10.1016/0378-1097(93)90361-5 |
[55] | Hagens, S., Habel, A., von Ahsen, U., von Gabain, A. and Blasi, U. (2004) Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822.
https://doi.org/10.1128/AAC.48.10.3817-3822.2004 |
[56] | Hagens, S. and Blasi, U. (2003) Genetically Modified Filamentous Phage as Bactericidal Agents: A Pilot Study. Letters in Applied Microbiology, 37, 318-323. https://doi.org/10.1046/j.1472-765X.2003.01400.x |
[57] | Steven, H., Andr?, H., Uwe, V.A., Alexander, V.G. and Udo, B.?. (2004) Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822.
https://doi.org/10.1128/AAC.48.10.3817-3822.2004 |
[58] | Moradpour, Z., et al. (2009) Genetically Engineered Phage Harbouring the Lethal Catabolite Gene Activator Protein Gene with an Inducer-Independent Promoter for Biocontrol of Escherichia coli. FEMS Microbiology Letters, 296, 67-71. https://doi.org/10.1111/j.1574-6968.2009.01620.x |
[59] | Westwater, C., et al. (2003) Use of Genetically Engineered Phage to Deliver Antimicrobial Agents to Bacteria: An Alternative Therapy for Treatment of Bacterial Infections. Antimicrobial Agents and Chemotherapy, 47, 1301-1307.
https://doi.org/10.1128/AAC.47.4.1301-1307.2003 |
[60] | Iftach, Y., Marina, S., Hagit, B., Doron, S. and Itai, B. (2006) Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages. Antimicrobial Agents and Chemotherapy, 50, 2087-2097.
https://doi.org/10.1128/AAC.00169-06 |
[61] | Yacoby, I., Bar, H. and Benhar, I. (2007) Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines. Antimicrobial Agents and Chemotherapy, 51, 2156-2163. https://doi.org/10.1128/AAC.00163-07 |
[62] | Vaks, L. and Benhar, I. (2011) In Vivo Characteristics of Targeted Drug-Carrying Filamentous Bacteriophage Nanomedicines. Journal of Nanobiotechnology, 9, Article No. 58. https://doi.org/10.1186/1477-3155-9-58 |
[63] | Fischetti, V.A. (2005) Bacteriophage Lytic Enzymes: Novel Anti-Infectives. Trends in Microbiology, 13, 491-496.
https://doi.org/10.1016/j.tim.2005.08.007 |
[64] | Gilmer, D.B., Schmitz, J.E., Euler, C.W. and Fischetti, V.A. (2013) Novel Bacteriophage Lysin with Broad Lytic Activity Protects against Mixed Infection by Streptococcus pyogenes and Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 57, 2743-2750. https://doi.org/10.1128/AAC.02526-12 |
[65] | Feifei, X., et al. (2016) Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus. Applied and Environmental Microbiology, 82, 87-94.
https://doi.org/10.1128/AEM.02581-15 |
[66] | Yufeng, Z., et al. (2018) Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci. Applied and Environmental Microbiology, 84, e00886-18. https://doi.org/10.1128/AEM.00886-18 |
[67] | Pastagia, M., et al. (2011) A Novel Chimeric Lysin Shows Superiority to Mupirocin for Skin Decolonization of Methicillin-Resistant and -Sensitive Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 55, 738-744.
https://doi.org/10.1128/AAC.00890-10 |
[68] | Rodr├?guez-Rubio, L., et al. (2018) The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA88 Display Multiple Active Catalytic Domains and Do Not Trigger Staphylococcal Resistance. PLoS ONE, 8, e64671. https://doi.org/10.1371/journal.pone.0064671 |
[69] | Lei, Z., et al. (2016) LysGH15 Kills Staphylococcus aureus without Being Affected by the Humoral Immune Response or Inducing Inflammation. Scientific Reports, 6, Article No. 29344. https://doi.org/10.1038/srep29344 |
[70] | Svetolik, D., et al. (2005) Synergistic Killing of Streptococcus pneumoniae with the Bacteriophage Lytic Enzyme Cpl-1 and Penicillin or Gentamicin Depends on the Level of Penicillin Resistance. Antimicrobial Agents and Chemotherapy, 49, 1225-1228. https://doi.org/10.1128/AAC.49.3.1225-1228.2005 |
[71] | Mohammad, R., et al. (2007) Efficient Elimination of Multidrug-Resistant Staphylococcus aureus by Cloned Lysin Derived from Bacteriophage Phi MR11. The Journal of Infectious Diseases, 196, 1237-1247.
https://doi.org/10.1086/521305 |
[72] | Fischetti, V.A. (2010) Bacteriophage Endolysins: A Novel Anti-Infective to Control Gram-Positive Pathogens. International Journal of Medical Microbiology, 300, 357-362. https://doi.org/10.1016/j.ijmm.2010.04.002 |
[73] | Jingmin, G., et al. (2014) Structural and Biochemical Characterization Reveals LysGH15 as an Unprecedented “EF-Hand-Like” Calcium-Binding Phage Lysin. PLoS Pathogens, 10, e1004109.
https://doi.org/10.1371/journal.ppat.1004109 |