全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抗生素替代疗法:噬菌体疗法
Antibiotic Replacement Therapy: Phage Therapy

DOI: 10.12677/AMB.2021.101005, PP. 30-42

Keywords: 噬菌体,细菌耐药性,噬菌体疗法,裂解酶,基因工程
Phage
, Bacterial Resistance, Phage Therapy, Lysase, Genetic Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来由于抗生素的滥用,细菌耐药已成为当前临床感染治疗面临的严峻问题,为解决细菌耐药的问题,科学家们再次把目光转移到被人们质疑甚至遗忘的噬菌体疗法上。噬菌体疗法通过噬菌体这种特殊的病毒及其衍生物可以裂解细菌治疗病原菌感染。噬菌体疗法在细菌耐药性日益严重的今天展现出了其独特的抗菌优势,是目前治疗细菌性感染特别是耐药菌的研究热点。本文对传统的常规噬菌体疗法以及以常规噬菌体疗法为基础演变而来的各种疗法进行了介绍,并分析了他们的优势和缺陷。
In recent years, due to the abuse of antibiotics, bacterial resistance has become a serious problem in the treatment of clinical infection. In order to solve the problem of bacterial resistance, scientists once again turn their attention to the phage therapy which has been questioned or even forgotten by people. Phage therapy treats bacterial infections by using bacteria from this specific virus and its derivatives. Phage therapy has shown its unique antibacterial advantages in today’s increasingly serious bacterial resistance, and it is currently a research hotspot in the treatment of bacterial infections, especially drug-resistant bacteria. In this paper, we introduce the traditional conventional phage therapy and the various therapies that have evolved on the basis of conventional phage therapy, and analyze their advantages and disadvantages.

References

[1]  Doss, J., Culbertson, K., Hahn, D., Camacho, J. and Barekzi, N. (2017) A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses Basel, 9, E50.
https://doi.org/10.3390/v9030050
[2]  Wahida, A., Ritter, K. and Horz, H.P. (2016) The Janus-Face of Bacteriophages across Human Body Habitats. PLOS Pathogens, 12, e1005634.
https://doi.org/10.1371/journal.ppat.1005634
[3]  Mirzaei, M.K. and Maurice, C.F. (2017) Menage a Trois in the Human Gut: Interactions between Host, Bacteria and Phages. Nature Reviews Microbiology, 15, 397-408.
https://doi.org/10.1038/nrmicro.2017.30
[4]  Barr, J.J., et al. (2013) Bacteriophage Adhering to Mucus Provide a Non-Host-Derived Immunity. Proceedings of the National Academy of Sciences of the United States of America, 110, 10771-10776.
https://doi.org/10.1073/pnas.1305923110
[5]  Duerkop, B.A. and Hooper, L.V. (2013) Resident Viruses and Their Interactions with the Immune System. Nature Immunology, 14, 654-659.
https://doi.org/10.1038/ni.2614
[6]  Huse, S.M., et al. (2008) Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLOS Genetics, 4, e1000255.
https://doi.org/10.1371/journal.pgen.1000255
[7]  Barr, J.J., Youle, M. and Rohwer, F. (2013) Innate and Acquired Bacteriophage-Mediated Immunity. Bacteriophage, 3, e25857.
https://doi.org/10.4161/bact.25857
[8]  Verbeken, G., et al. (2007) European Regulatory Conundrum of Phage Therapy. Future Microbiology, 2, 485-491.
https://doi.org/10.2217/17460913.2.5.485
[9]  Shigenobu, M., et al. (2005) Bacteriophage Therapy: A Revitalized Therapy against Bacterial Infectious Diseases. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 11, 211-219.
https://doi.org/10.1007/s10156-005-0408-9
[10]  Viertel, T.M., Ritter, K. and Horz, H.P. (2014) Viruses versus Bacteria-Novel Approaches to Phage Therapy as a Tool against Multidrug-Resistant Pathogens. Journal of Antimicrobial Chemotherapy, 69, 2326-2336.
https://doi.org/10.1093/jac/dku173
[11]  O’Flaherty, S., Ross, R.P. and Coffey, A. (2009) Bacteriophage and Their Lysins for Elimination of Infectious Bacteria. FEMS Microbiology Reviews, 33, 801-819.
https://doi.org/10.1111/j.1574-6976.2009.00176.x
[12]  Wittebole, X., De Roock, S. and Opal, S.M. (2014) A Historical Overview of Bacteriophage Therapy as an Alternative to Antibiotics for the Treatment of Bacterial Pathogens. Virulence, 5, 226-235.
https://doi.org/10.4161/viru.25991
[13]  Sylwia, P., Magdalena, K., Romuald, G., Lidia, M. and Anna, M. (2014) Bacteriophages as an Alternative Strategy for Fighting Biofilm Development. Polish Journal of Microbiology, 63, 137-145.
https://doi.org/10.33073/pjm-2014-019
[14]  Ul, H.I., Nasir, C.W., Nadeem, A.M., Saadia, A. and Ishtiaq, Q. (2012) Bacteriophages and Their Implications on Future Biotechnology: A Review. Virology Journal, 9, 9.
[15]  Schmelcher, M. and Loessner, M.J. (2014) Application of Bacteriophages for Detection of Foodborne Pathogens. Bacteriophage, 4, e28137.
https://doi.org/10.4161/bact.28137
[16]  Clark, J.R. and March, J.B. (2006) Bacteriophages and Biotechnology: Vaccines, Gene Therapy and Antibacterials. Trends in Biotechnology, 24, 212-218.
https://doi.org/10.1016/j.tibtech.2006.03.003
[17]  Shi, Y.B., et al. (2012) Characterization and Determination of Holin Protein of Streptococcus suis Bacteriophage SMP in Heterologous Host. Virology Journal, 9, Article No. 70.
https://doi.org/10.1186/1743-422X-9-70
[18]  Wang, I.N., Smith, D.L. and Young, R. (2000) Holins: The Protein Clocks of Bacteriophage Infections. Annual Review of Microbiology, 54, 799-825.
https://doi.org/10.1146/annurev.micro.54.1.799
[19]  Linden, S.B., et al. (2015) Biochemical and Biophysical Characterization of PlyGRCS, a Bacteriophage Endolysin Active against Methicillin-Resistant Staphylococcus aureus. Applied Microbiology and Biotechnology, 99, 741-752.
https://doi.org/10.1007/s00253-014-5930-1
[20]  Mapes, A.C., Trautner, B.W., Liao, K.S. and Bacteriophage, R.F.R.J. (2016) Development of Expanded Host Range Phage Active on Biofilms of Multi-Drug Resistant Pseudomonas aeruginosa. Bacteriophage, 6, e1096995.
https://doi.org/10.1080/21597081.2015.1096995
[21]  Hendrix, R.W., Smith, M.C.M., Burns, R.N., Ford, M.E. and Hatfull, G.F. (1999) Evolutionary Relationships among Diverse Bacteriophages and Prophages: All the World’s a Phage. Proceedings of the National Academy of Sciences of the United States of America, 96, 2192-2197.
https://doi.org/10.1073/pnas.96.5.2192
[22]  Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.L. and Brussow, H. (2004) Phage-Host Interaction: An Ecological Perspective. Journal of Bacteriology, 186, 3677-3686.
https://doi.org/10.1128/JB.186.12.3677-3686.2004
[23]  Yang, W., et al. (2016) Isolation, Phylogenetic Group, Drug Resistance, Biofilm Formation, and Adherence Genes of Escherichia coli from Poultry in Central China. Poultry Science, 95, 2895-2901.
https://doi.org/10.3382/ps/pew252
[24]  Verma, V., Harjai, K. and Chhibber, S. (2010) Structural Changes Induced by a Lytic Bacteriophage Make Ciprofloxacin Effective against Older Biofilm of Klebsiella pneumoniae. Biofouling, 26, 729-737.
https://doi.org/10.1080/08927014.2010.511196
[25]  Bedi, M.S., Verma, V. and Chhibber, S. (2009) Amoxicillin and Specific Bacteriophage Can Be Used Together for Eradication of Biofilm of Klebsiella pneumoniae B5055. World Journal of Microbiology and Biotechnology, 25, 1145-1151.
https://doi.org/10.1007/s11274-009-9991-8
[26]  Liu, M.S., et al. (2002) Reverse Transcriptase-Mediated Tropism Switching in Bordetella bacteriophage. Science, 295, 2091-2094.
https://doi.org/10.1126/science.1067467
[27]  Yen, L., et al. (2004) Exogenous Control of Mammalian Gene Expression through Modulation of RNA Self-Cleavage. Nature, 431, 471-476.
https://doi.org/10.1038/nature02844
[28]  Shinedling, S., et al. (1987) Wild-Type Bacteriophage T4 Is Restricted by the Lambda Rex Genes. Journal of Virology, 61, 3790-3794.
https://doi.org/10.1128/JVI.61.12.3790-3794.1987
[29]  Drulis-Kawa, Z., Majkowska-Skrobek, G. and Maciejewska, B. (2015) Bacteriophages and Phage-Derived Proteins—Application Approaches. Current Medicinal Chemistry, 22, 1757-1773.
https://doi.org/10.2174/0929867322666150209152851
[30]  Yu, P., Mathieu, J., Li, M., Dai, Z. and Alvarez, P.J. (2016) Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Applied and Environmental Microbiology, 82, 808-815.
https://doi.org/10.1128/AEM.02382-15
[31]  Zaczek, M., et al. (2016) Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Frontiers in Microbiology, 7, 1681.
https://doi.org/10.3389/fmicb.2016.01681
[32]  Merabishvili, M., et al. (2009) Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials. PLoS ONE, 4, e4944.
https://doi.org/10.1371/journal.pone.0004944
[33]  Cisek, A.A., Dabrowska, I., Gregorczyk, K.P. and Wyzewski, Z. (2017) Phage Therapy in Bacterial Infections Treatment: One Hundred Years after the Discovery of Bacteriophages. Current Microbiology, 74, 277-283.
https://doi.org/10.1007/s00284-016-1166-x
[34]  Sulakvelidze, A., et al. (2001) Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy, 45, 649-659.
https://doi.org/10.1128/AAC.45.3.649-659.2001
[35]  Plociennikowska, A., Hromada-Judycka, A., Borzecka, K. and Kwiatkowska, K. (2015) Co-Operation of TLR4 and Raft Proteins in LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 72, 557-581.
https://doi.org/10.1007/s00018-014-1762-5
[36]  Lepper, P.M., et al. (2002) Clinical Implications of Antibiotic-Induced Endotoxin Release in Septic Shock. Intensive Care Medicine, 28, 824-833.
https://doi.org/10.1007/s00134-002-1330-6
[37]  Dufour, N., Delattre, R., Ricard, J.D. and Debarbieux, L. (2017) The Lysis of Pathogenic Escherichia coli by Bacteriophages Releases Less Endotoxin Than by Beta-Lactams. Clinical Infectious Diseases, 64, 1582-1588.
https://doi.org/10.1093/cid/cix184
[38]  Zelasko, S., Gorski, A. and Dabrowska, K. (2017) Delivering Phage Therapy per os: Benefits and Barriers. Expert Review of Anti-Infective Therapy, 15, 167-179.
https://doi.org/10.1080/14787210.2017.1265447
[39]  Brown, T.L., Petrovski, S., Dyson, Z.A., Seviour, R. and Tucci, J. (2016) The Formulation of Bacteriophage in a Semi Solid Preparation for Control of Propionibacterium acnes Growth. PLoS ONE, 11, e0151184.
https://doi.org/10.1371/journal.pone.0151184
[40]  Bodier-Montagutelli, E., et al. (2017) Inhaled Phage Therapy: A Promising and Challenging Approach to Treat Bacterial Respiratory Infections. Expert Opinion on Drug Delivery, 14, 959-972.
https://doi.org/10.1080/17425247.2017.1252329
[41]  Ooi, M.L., et al. (2019) Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngology—Head and Neck Surgery, 145, 723-729.
https://doi.org/10.1001/jamaoto.2019.1191
[42]  Nobrega, F.L., Costa, A.R., Kluskens, L.D. and Azeredo, J. (2015) Revisiting Phage Therapy: New Applications for Old Resources. Trends in Microbiology, 23, 185-191.
https://doi.org/10.1016/j.tim.2015.01.006
[43]  Chan, B.K., et al. (2013) Phage Cocktails and the Future of Phage Therapy. Future Microbiology, 8, 769-783.
https://doi.org/10.2217/fmb.13.47
[44]  Keen, E.C., et al. (2017) Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation. mBio, 8, e02115-16.
https://doi.org/10.1128/mBio.02115-16
[45]  Fancello, L., Desnues, C., Raoult, D. and Rolain, J.M. (2011) Bacteriophages and Diffusion of Genes Encoding Antimicrobial Resistance in Cystic Fibrosis Sputum Microbiota. Journal of Antimicrobial Chemotherapy, 66, 2448-2454.
https://doi.org/10.1093/jac/dkr315
[46]  Modi, S.R., Lee, H.H., Spina, C.S. and Collins, J.J. (2013) Antibiotic Treatment Expands the Resistance Reservoir and Ecological Network of the Phage Metagenome. Nature, 499, 219-222.
https://doi.org/10.1038/nature12212
[47]  Kim, K.P., et al. (2008) PEGylation of Bacteriophages Increases Blood Circulation Time and Reduces T-Helper Type 1 Immune Response. Microbial Biotechnology, 1, 247-257.
https://doi.org/10.1111/j.1751-7915.2008.00028.x
[48]  Vitiello, C.L., Merril, C.R. and Adhya, S. (2005) An Amino Acid Substitution in a Capsid Protein Enhances Phage Survival in Mouse Circulatory System More than a 1000-Fold. Virus Research, 114, 101-103.
https://doi.org/10.1016/j.virusres.2005.05.014
[49]  Singla, S.i, Harjai, K., Katare, O.P. and Chhibber, S. (2015) Bacteriophage-Loaded Nanostructured Lipid Carrier: Improved Pharmacokinetics Mediates Effective Resolution of Klebsiella pneumoniae-Induced Lobar Pneumonia. The Journal of Infectious Diseases, 212, 325-334.
[50]  Ando, H., Lemire, S., Pires, D.P. and Lu, T.K. (2015) Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1, 187-196.
https://doi.org/10.1016/j.cels.2015.08.013
[51]  Lemon, D.J., et al. (2019) Construction of a Genetically Modified T7Select Phage System to Express the Antimicrobial Peptide 1018. Journal of Microbiology, 57, 532-538.
https://doi.org/10.1007/s12275-019-8686-6
[52]  Faezeh, M., John, S.A., Keiko, Y., Toshiya, O. and Yasunori, T. (2009) Site-Specific Recombination of T2 Phage Using IP008 Long Tail Fiber Genes Provides a Targeted Method for Expanding Host Range While Retaining Lytic Activity. FEMS Microbiology Letters, 295, 211-217.
https://doi.org/10.1111/j.1574-6968.2009.01588.x
[53]  Young, R. and Bl?si, U. (1995) Holins: Form and Function in Bacteriophage Lysis. FEMS Microbiology Reviews, 17, 191-205.
https://doi.org/10.1111/j.1574-6976.1995.tb00202.x
[54]  Rietsch, A. and Bl?si, U. (1993) Non-Specific Hole Formation in the Escherichia coli Inner Membrane by Lambda S Proteins in Independent of Cellular secY and secA Functions and of the Proportion of Membrane Acidic Phospholipids. FEMS Microbiology Letters, 107, 101-105.
https://doi.org/10.1016/0378-1097(93)90361-5
[55]  Hagens, S., Habel, A., von Ahsen, U., von Gabain, A. and Blasi, U. (2004) Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822.
https://doi.org/10.1128/AAC.48.10.3817-3822.2004
[56]  Hagens, S. and Blasi, U. (2003) Genetically Modified Filamentous Phage as Bactericidal Agents: A Pilot Study. Letters in Applied Microbiology, 37, 318-323.
https://doi.org/10.1046/j.1472-765X.2003.01400.x
[57]  Steven, H., Andr?, H., Uwe, V.A., Alexander, V.G. and Udo, B.?. (2004) Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822.
https://doi.org/10.1128/AAC.48.10.3817-3822.2004
[58]  Moradpour, Z., et al. (2009) Genetically Engineered Phage Harbouring the Lethal Catabolite Gene Activator Protein Gene with an Inducer-Independent Promoter for Biocontrol of Escherichia coli. FEMS Microbiology Letters, 296, 67-71.
https://doi.org/10.1111/j.1574-6968.2009.01620.x
[59]  Westwater, C., et al. (2003) Use of Genetically Engineered Phage to Deliver Antimicrobial Agents to Bacteria: An Alternative Therapy for Treatment of Bacterial Infections. Antimicrobial Agents and Chemotherapy, 47, 1301-1307.
https://doi.org/10.1128/AAC.47.4.1301-1307.2003
[60]  Iftach, Y., Marina, S., Hagit, B., Doron, S. and Itai, B. (2006) Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages. Antimicrobial Agents and Chemotherapy, 50, 2087-2097.
https://doi.org/10.1128/AAC.00169-06
[61]  Yacoby, I., Bar, H. and Benhar, I. (2007) Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines. Antimicrobial Agents and Chemotherapy, 51, 2156-2163.
https://doi.org/10.1128/AAC.00163-07
[62]  Vaks, L. and Benhar, I. (2011) In Vivo Characteristics of Targeted Drug-Carrying Filamentous Bacteriophage Nanomedicines. Journal of Nanobiotechnology, 9, Article No. 58.
https://doi.org/10.1186/1477-3155-9-58
[63]  Fischetti, V.A. (2005) Bacteriophage Lytic Enzymes: Novel Anti-Infectives. Trends in Microbiology, 13, 491-496.
https://doi.org/10.1016/j.tim.2005.08.007
[64]  Gilmer, D.B., Schmitz, J.E., Euler, C.W. and Fischetti, V.A. (2013) Novel Bacteriophage Lysin with Broad Lytic Activity Protects against Mixed Infection by Streptococcus pyogenes and Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 57, 2743-2750.
https://doi.org/10.1128/AAC.02526-12
[65]  Feifei, X., et al. (2016) Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus. Applied and Environmental Microbiology, 82, 87-94.
https://doi.org/10.1128/AEM.02581-15
[66]  Yufeng, Z., et al. (2018) Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci. Applied and Environmental Microbiology, 84, e00886-18.
https://doi.org/10.1128/AEM.00886-18
[67]  Pastagia, M., et al. (2011) A Novel Chimeric Lysin Shows Superiority to Mupirocin for Skin Decolonization of Methicillin-Resistant and -Sensitive Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 55, 738-744.
https://doi.org/10.1128/AAC.00890-10
[68]  Rodr├?guez-Rubio, L., et al. (2018) The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA88 Display Multiple Active Catalytic Domains and Do Not Trigger Staphylococcal Resistance. PLoS ONE, 8, e64671.
https://doi.org/10.1371/journal.pone.0064671
[69]  Lei, Z., et al. (2016) LysGH15 Kills Staphylococcus aureus without Being Affected by the Humoral Immune Response or Inducing Inflammation. Scientific Reports, 6, Article No. 29344.
https://doi.org/10.1038/srep29344
[70]  Svetolik, D., et al. (2005) Synergistic Killing of Streptococcus pneumoniae with the Bacteriophage Lytic Enzyme Cpl-1 and Penicillin or Gentamicin Depends on the Level of Penicillin Resistance. Antimicrobial Agents and Chemotherapy, 49, 1225-1228.
https://doi.org/10.1128/AAC.49.3.1225-1228.2005
[71]  Mohammad, R., et al. (2007) Efficient Elimination of Multidrug-Resistant Staphylococcus aureus by Cloned Lysin Derived from Bacteriophage Phi MR11. The Journal of Infectious Diseases, 196, 1237-1247.
https://doi.org/10.1086/521305
[72]  Fischetti, V.A. (2010) Bacteriophage Endolysins: A Novel Anti-Infective to Control Gram-Positive Pathogens. International Journal of Medical Microbiology, 300, 357-362.
https://doi.org/10.1016/j.ijmm.2010.04.002
[73]  Jingmin, G., et al. (2014) Structural and Biochemical Characterization Reveals LysGH15 as an Unprecedented “EF-Hand-Like” Calcium-Binding Phage Lysin. PLoS Pathogens, 10, e1004109.
https://doi.org/10.1371/journal.ppat.1004109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133