全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分子对接技术对维生素D3羟化酶底物谱的筛选及验证
Screening and Validation of Vitamin D3 Hydroxylase Substrate Profile Based on Molecular Docking Technique

DOI: 10.12677/JAPC.2021.102002, PP. 9-19

Keywords: 维生素D3羟化酶,VD3,分子对接,分子动力学模拟,虚拟筛选
Vitamin D3 Hydroxylase
, VD3, Molecular Docking, Molecular Dynamics Simulation, Virtual Screening

Full-Text   Cite this paper   Add to My Lib

Abstract:

维生素D3羟化酶(Vdh)是生物法合成维生素D3 (VD3)活性形式25(OH)VD3和1α,25(OH)2VD3的关键酶之一。然而,至今对Vdh的天然底物了解甚少,限制了其工业上的应用。为了提高Vdh的商业价值,找到Vdh的最佳底物,探究Vdh与底物的作用机制,深入挖掘Vdh的应用潜力。本研究以VD3与Vdh的结合模型为基础,利用Autodock分子对接技术对ZINC化合物数据库进行筛选,结合打分,性质筛选以及广义伯恩表面积法(MM/GBSA)计算结合自由能,最终从中挑选出4个小分子进行了实验验证。实验结果与筛选结果一致,4个小分子均能与Vdh发生反应,范德华力是Vdh与小分子结合的主要驱动力,推测Vdh是生产类固醇类药物的潜在生物催化剂。我们的研究为生物合成类固醇药物提供了新思路,也为深入了解Vdh提供了理论基础。

References

[1]  Fujii, Y., Kabumoto, H., Nishimura, K., et al. (2009) Purification, Characterization, and Directed Evolution Study of a Vitamin d3 Hydroxylase from Pseudonocardia Autotrophica. Biochemical & Biophysical Research Communications, 385, 170-175.
https://doi.org/10.1016/j.bbrc.2009.05.033
[2]  Yasutake, Y., Nishioka, T., Imoto, N. and Tamura, T. (2013) A Single Mutation at the Ferredoxin Binding Site of p450 vdh Enables Efficient Biocatalytic Production of 25-Hydroxyvitamin D3. ChemBioChem, 14, 2284-2291.
https://doi.org/10.1002/cbic.201300386
[3]  Batth, R., Nicolle, C., Cuciurean, I.S. and Simonsen, H.T. (2020) Biosynthesis and Industrial Production of Androsteroids. Plants (Basel, Switzerland), 9, 1144.
https://doi.org/10.3390/plants9091144
[4]  Rugutt, J.K. and Rugutt, K.J. (2012) Antimycobacterial Activity of Steroids, Long-Chain Alcohols and Lytic Peptides. Natural Product Research, 26, 1004-1011.
https://doi.org/10.1080/14786419.2010.539977
[5]  Restaino, O.F., Barbuto Ferraiuolo, S., Perna, A., et al. (2020) Biotechnological Transformation of Hydrocortisone into 16α-Hydroxyprednisolone by Coupling Arthrobacter simplex and Streptomyces roseochromogenes. Molecules, 25, 4912.
https://doi.org/10.3390/molecules25214912
[6]  Sanabria, V., Bittencourt, S., Perosa, S.R., et al. (2020) Hormonal and Biochemical Changes in Female Proechimys Guyannensis, an Animal Model of Resistance to Pilocarpine-Induced Status Epilepticus. Scientific Reports, 10, 20982.
https://doi.org/10.1038/s41598-020-77879-1
[7]  Donova, M.V. and Egorova, O.V. (2012) Microbial Steroid Transformations: Current State and Prospects. Applied Microbiology and Biotechnology, 94, 1423-1447.
https://doi.org/10.1007/s00253-012-4078-0
[8]  Yang, X., Wang, Y., Byrne, R., et al. (2019) Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews, 119, 10520-10594.
https://doi.org/10.1021/acs.chemrev.8b00728
[9]  Yasutake, Y., Fujii, Y., Nishioka, T., et al. (2010) Structural Evidence for Enhancement of Sequential Vitamin d3 Hydroxylation Activities by Directed Evolution of Cytochrome p450 Vitamin D3 Hydroxylase. Journal of Biological Chemistry, 285, 31193-31201.
https://doi.org/10.1074/jbc.M110.147009
[10]  Brooks, B.R., Brooks III, C.L., Mackerell Jr., A.D., et al. (2009) Charmm: The Biomolecular Simulation Program. Journal of Computational Chemistry, 30, 1545-1614.
https://doi.org/10.1002/jcc.21287
[11]  O’Boyle, N.M., Banck, M., James, C.A., et al. (2011) Open Babel: An Open Chemical Toolbox. Journal of Cheminformatics, 3, Article No. 33.
https://doi.org/10.1186/1758-2946-3-33
[12]  Dennington, R., Keith, T. and Millam, J. (2009) Gauss View, Version 5. Semichem Inc., Shawnee Mission.
[13]  Case, D.A., Cheatham 3rd, T.E., Darden, T., et al. (2005) The Amber Biomolecular Simulation Programs. Journal of Computational Chemistry, 26, 1668-1688.
https://doi.org/10.1002/jcc.20290
[14]  Wang, J., Wang, W., Kollman, P.A. and Case, D.A. (2006) Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. Journal of Molecular Graphics and Modelling, 25, 247-260.
https://doi.org/10.1016/j.jmgm.2005.12.005
[15]  Maier, J.A., Martinez, C., Kasavajhala, K., et al. (2015) ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation, 11, 3696-3713.
https://doi.org/10.1021/acs.jctc.5b00255
[16]  Wang, J., Wolf, R.M., Caldwell, J.W., et al. (2004) Development and Testing of a General Amber Force Field. Journal of Computational Chemistry, 25, 1157-1174.
https://doi.org/10.1002/jcc.20035
[17]  Jorgensen, W., Chandrasekhar, J., Madura, J., et al. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. The Journal of Chemical Physics, 79, 926-935.
https://doi.org/10.1063/1.445869
[18]  Andersen, H.C. (1983) Rattle: A “Velocity” Version of the Shake Algorithm for Molecular Dynamics Calculations. J Comp Phys, 52, 24-34.
https://doi.org/10.1016/0021-9991(83)90014-1
[19]  Darden, T., York, D. and Pedersen, L. (1993) Particle Mesh Ewald: An N?log(n) Method for Ewald Sums in Large Systems. The Journal of Chemical Physics, 98, 10089.
https://doi.org/10.1063/1.464397
[20]  Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., et al. (1984) Molecular Dynamics with Coupling to an External Bath. The Journal of Chemical Physics, 81, 3684.
https://doi.org/10.1063/1.448118
[21]  Hou, T., Wang, J., Li, Y. and Wang, W. (2011) Assessing the Performance of the Molecular Mechanics/Poisson Boltzmann Surface area and Molecular Mechanics/Generalized Born Surface Area Methods. II. The Accuracy of Ranking Poses Generated from Docking. Journal of Computational Chemistry, 32, 866-877.
https://doi.org/10.1002/jcc.21666
[22]  Takamatsu, Y., Sugiyama, A., Purqon, A., et al. (2006) Binding Free Energy Calculation and Structural Analysis for Antigen-Antibody Complex. AIP Conference Proceedings, 832, No. 1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133