This
study aimed at improving the antioxidant capacity of fermented camel milk using
some single strains of Lactobacillus (Lb. helveticusB-734, Lb.
caseisubsp.caseiB-1922,Lb. paracaseisubsp.paracaseiB-4560,Lb. rhamnosusB-1445or Lb. rhamnosus
Salami, M., Yousefi, R., Ehsani, M.R., Razavi, S.H., Chobert, J.M., Haertl, T., et al. (2009) Enzymatic Digestion and Antioxidant Activity of the Native and Molten Globule States of Camel β-Lactalbumin: Possible Significance for Use in Infant Formula. International Dairy Journal, 19, 518-523. https://doi.org/10.1016/j.idairyj.2009.02.007
[3]
Bai, Y. and Zhao, D. (2015) The Acid-Base Buffering Properties of Alxa Bactrian Camel Milk. Small Ruminant Research, 123, 287-292. https://doi.org/10.1016/j.smallrumres.2014.10.011
[4]
Quan, S., Tsuda, H. and Miyamoto, T. (2008) Angiotensin I-Converting Enzyme Inhibitory Peptides in Skim Milk Fermented with Lactobacillus helveticus 130B4 from Camel Milk in Inner Mongolia, China. Journal of the Science of Food and Agriculture, 88, 2688-2692. https://doi.org/10.1002/jsfa.3394
[5]
Badkook, M.M. (2013) Fermented Camel Milk Reduces Inflammation in Rats Fed a High-Fat Diet. International Journal of Health Sciences and Research, 3, 7-17.
[6]
Solanki, D. and Hati, S. (2018) Fermented Camel Milk: A Review on Its Bio-Functional Properties. Emirates Journal of Food and Agriculture, 30, 268-274. https://doi.org/10.9755/ejfa.2018.v30.i4.1661
[7]
Berhe, T., Seifu, E., Ipsen, R., Kurtu, M.Y. and BechHansen, E. (2017) Processing Challenges and Opportunities of Camel Dairy Products. International Journal of Food Science, 2017, Article ID: 9061757. https://doi.org/10.1155/2017/9061757
[8]
Donkor, O.N., Henriksson, A., Singh, T.K., Vasiljevic, T. and Shah, N.P. (2007) ACE-Inhibitory Activity of Probiotic Yoghurt. International Dairy Journal, 17, 1321-1331. https://doi.org/10.1016/j.idairyj.2007.02.009
[9]
El-Sayed, M.I., Awad, S., Wahba, A., El Attar, A., Yousef, M.I. and Zedan, M. (2016) In Vivo Anti-Diabetic and Biological Activities of Milk Protein and Milk Protein Hydrolyaste. Advances in Dairy Research, 4, Article ID: 1000154.
[10]
Awad, S., El-Sayed, M.I., Wahba, A., El Attar, A., Yousef, M.I. and Zedan, M. (2016) Antioxidant Activity of Milk Protein Hydrolyaste in Alloxan-Induced Diabetic Rats. Journal of Dairy Science, 99, 8499-8510. https://doi.org/10.3168/jds.2015-10626
[11]
El-Sayed, M. and Awad, S. (2019) Milk Bioactive Peptides: Antioxidant, Antimicrobial and Anti-Diabetic Activities. Advances in Biochemistry, 7, 22-33. https://doi.org/10.11648/j.ab.20190701.15
[12]
Jrad, Z., Girardet, J.M., Adt, I., Oulahal, N., Degraeve, P., Khorchani, T. and El Hatm, H. (2014) Antioxidant Activity of Camel Milk Casein before and after in Vitro Simulated Enzymatic Digestion. Mljekarstvo, 64, 287-294. https://doi.org/10.15567/mljekarstvo.2014.0408
[13]
Phelan, M., Aherne, A., FitzGerald, R.J. and O’Brien, N.M. (2009) Casein-Derived Bioactive Peptides: Biological Effects, Industrial Uses, Safety Aspects and Regulatory Status. International Dairy Journal, 19, 643-654. https://doi.org/10.1016/j.idairyj.2009.06.001
[14]
Pimentel, F.B., Cermeño, M., Kleekayai, T., Harnedy, P., et al. (2020) Effect of in Vitro Simulated Gastrointestinal Digestion on the Antioxidant Activity of the Red Seaweed Porphyra dioica. Food Research International, 136, Article ID: 109309. https://doi.org/10.1016/j.foodres.2020.109309
[15]
Zhou, D., Zhu, B., Lu, Q., Wu, H., Li, D., Yang, J., et al. (2012) In Vitro Antioxidant Activity of Enzymatic Hydrolysates Prepared from Abalone (Haliotis discus hannai Ino) Viscera. Food and Bioproducts Processing, 90, 148-154. https://doi.org/10.1016/j.fbp.2011.02.002
[16]
Savijoki, K., Ingmer, H. and Varmanen, P. (2006) Proteolytic Systems of Lactic Acid Bacteria. Applied Microbiology and Biotechnology, 71, 394-406. https://doi.org/10.1007/s00253-006-0427-1
[17]
Kunji, E.R.S., Mierau, I., Hagting, A., Poolman, B. and Konings, N. (1996) The Proteolytic System of Lactic Acid Bacteria. Antonie Leeuwenhoek, 70, 187-221. https://doi.org/10.1007/BF00395933
[18]
Bahobail, A.S., Ali, A.A. and Alyan, A.A. (2014) Effect of Fermentation Process on the Improvement of Nutrition Value of Camel Milk. International Journal of Multidisciplinary and Current Research, 2, 78-82.
[19]
Moslehishad, M., Ehsani, M.R., Salami, M., Mirdamadi, S., Ezzatpanah, H., Naslaji, A.N. and Moosavi-Movahedi, A.A. (2013) The Comparative Assessment of ACE-Inhibitory and Antioxidant Activities of Peptide Fractions Obtained from Fermented Camel and Bovine Milk by Lactobacillus rhamnosus PTCC 1637. International Dairy Journal, 29, 82-87. https://doi.org/10.1016/j.idairyj.2012.10.015
[20]
Ayyash, M., Al-Nuaimi, A.K., Al-Mahadin, S. and Liu, S.Q. (2017) In Vitro Investigation of Anticancer and ACE-Inhibiting Activity, α-Amylase and α-Glucosidase Inhibition, and Antioxidant Activity of Camel Milk Fermented with Camel Milk Probiotic: A Comparative Study with Fermented Bovine Milk. Food Chemistry, 239, 588-597. https://doi.org/10.1016/j.foodchem.2017.06.149
[21]
Kansci, G., Genot, C., Meynier, A., Gaucheron, F. and Chobert, J.M. (2004) B-Caseinophosphopeptide (f1-25) Confers on β-Casein Tryptic Hydrolysate an Antioxidant Activity during Iron/Ascorbate-Induced Oxidation of Liposomes. Lait, 84, 449-462. https://doi.org/10.1051/lait:2004019
[22]
Moslehishad, M., Mirdamadi, S., Ehsani, M.R., Ezzatpanah, H. and Moosavimovahed, A.A. (2013) The Proteolytic Activity of Selected Lactic Acid Bacteria in Fermenting Cow’s and Camel’s Milk and the Resultant Sensory Characteristics of the Products. International Journal of Dairy Technology, 66, 279-285. https://doi.org/10.1111/1471-0307.12017
[23]
Salami, M., Moosavi-Movahedi, A.A., Moosavi-Movahe-di, F., Ehsani, M.R., Yousefi, R., Fahadi, M., Niasari-Nasl-aji, A., Saboury, A.A., Chobert, J.M. and Haertlé, T. (2011) Biological Activity of Camel Milk Casein Following Enzymatic Digestion. Journal of Dairy Research, 78, 471-487. https://doi.org/10.1017/S0022029911000628
[24]
Tamime, A.Y. and Robinson, R.K. (2007) Tamime and Robinson’s Yoghurt: Science and Technology. 3rd Edition, Woodhead Publishing Limited, Cambridge, 11-118.
[25]
AOAC (2005) Official Methods of Analysis of the Association Analytical Chemists. 18th Edition, Association of Official Analytical Chemistry, Gaithersburg.
[26]
Shori, A.B. and Baba, A.S. (2013) Antioxidant Activity and Inhibition of Key Enzymes Linked to Type-2 Diabetes and Hypertension by Azadirachta indica-Yogurt. Journal of Saudi Chemical Society, 17, 295-301. https://doi.org/10.1016/j.jscs.2011.04.006
[27]
Folkertsma, B. and Fox, P.F. (1992) Use of the Cd-Ninhydrin Reagent to Assess Proteolysis in Cheese during Ripening. Journal of Dairy Research, 59, 217-224. https://doi.org/10.1017/S0022029900030466
[28]
Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 277, 680-685. https://doi.org/10.1038/227680a0
[29]
Abirami, A., Nagarani, G. and Siddhuraju, P. (2014) In Vitro Antioxidant, Antidiabetic, Cholinesterase and Tyrosinase Inhibitory Potential of Fresh Juice from Citrus hystrix and C. maxima Fruits. Food Science and Human Wellness, 3, 16-25. https://doi.org/10.1016/j.fshw.2014.02.001
[30]
Lim, Y.Y. and Quah, E.P.L. (2007) Antioxidant Properties of Different Cultivars of Portulaca oleracea. Food Chemistry, 103, 734-740. https://doi.org/10.1016/j.foodchem.2006.09.025
[31]
Chan, E.W.C., Lim, Y.Y. and Chew, Y.L. (2007) Antioxidant Activity of Camellia sinensis Leaves and Tea from a Lowland Plantation in Malaysia. Food Chemistry, 102, 1214-1222. https://doi.org/10.1016/j.foodchem.2006.07.009
[32]
Oyaizu, M. (1986) Studies on Products of Browning Reaction: Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Japan Journal of Nutrition, 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
[33]
Papadimitriou, C.G., Mastrojiannaki, A.V., Silva, A.V., Gomes, A.M., Malcata, F.X. and Alichanidis, E. (2007) Identification of Peptides in Traditional and Probiotic Sheep Milk Yoghurt with Angiotensin I-Converting Enzyme (ACE)-Inhibitory Activity. Food Chemistry, 105, 647-656. https://doi.org/10.1016/j.foodchem.2007.04.028
[34]
Al-Sheraji, S.H., Ismail, A., Manap, M.Y., Mustafa, S., Yusof, R.M. and Hassan, F.A. (2013) Prebiotics as Functional Foods: A Review. Journal of Functional Foods, 5, 1542-1553. https://doi.org/10.1016/j.jff.2013.08.009
[35]
Shori, A.B. (2013) Antioxidant Activity and Viability of Lactic Acid Bacteria in Soybean-Yogurt Made from Cow and Camel Milk. Journal of Taibah University for Science, 7, 202-208. https://doi.org/10.1016/j.jtusci.2013.06.003
[36]
De-Oliveira, M.N. (2014) Fermented Milks and Yogurt (in Fermented Milks). In: Batt, C. and Batt, C.A., Eds., Encyclopedia of Food Microbiology, 2nd Edition, Academic Press, London, 908-922. https://doi.org/10.1016/B978-0-12-384730-0.00121-X
[37]
Sasaki, M., Bosman, B.W. and Tan, P.S.T. (1995) Comparison of Proteolytic Activities in Various Lactobacilli. Journal of Dairy Research, 62, 601-610. https://doi.org/10.1017/S0022029900031332
[38]
Griffiths, M.W. and Tellez, A.M. (2013) Lactobacillus helveticus: The Proteolytic System. Frontiers in Microbiology, 4, 1-9. https://doi.org/10.3389/fmicb.2013.00030
[39]
El-Zahar, K., Sitohy, M., Dalgalarrondo, M., Choiset, Y., Métro, F., et al. (2004) Purification and Physicochemical Characterization of Ovine β-Lactoglobulin and α-Lactalbumin. Nahrung/Food, 48, 177-183. https://doi.org/10.1002/food.200300447
[40]
Li, S., Tang, S., He, Q., Hu, J. and Zheng, J. (2019) Changes in Proteolysis in Fermented Milk Produced by Streptococcus thermophilus in Co-Culture with Lactobacillus plantarum or Bifidobacterium animalis subsp. lactis during Refrigerated Storage. Molecules, 24, 3699. https://doi.org/10.3390/molecules24203699
[41]
Ainsworth, E.A. and Gillespie, K.M. (2007) Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin-Ciocalteu Reagent. Nature Protocols, 2, 875-877. https://doi.org/10.1038/nprot.2007.102
[42]
Virtanen, T., Pihlanto, A., Akkanen, S. and Korhonen, H. (2007) Development of Antioxidant Activity in Milk Whey during Fermentation with Lactic Acid Bacteria. Journal of Applied Microbiology, 102, 106-115. https://doi.org/10.1111/j.1365-2672.2006.03072.x
[43]
Alemán, A., Giménez, B., Pérez-Santin, E., Gómez-Guillén, M. and Montero, P. (2011) Contribution of Leu and Hyp Residues to Antioxidant and ACE-Inhibitory Activities of Peptide Sequences Isolated from Squid Gelatin Hydrolysate. Food Chemistry, 125, 334-341. https://doi.org/10.1016/j.foodchem.2010.08.058
[44]
Namdari, A. and Nejati, F. (2016) Development of Antioxidant Activity during Milk Fermentation by Wild Isolates of Lactobacillus helveticus. Applied Food Biotechnology, 3, 178-186.
[45]
Yilmaz-Ersan, L., Ozcan, T., Akpinar-Bayizit, A. and Sahin, S. (2016) The Antioxidative Capacity of Kefir Produced from Goat Milk. International Journal of Chemical Engineering and Applications, 7, 22-26. https://doi.org/10.7763/IJCEA.2016.V7.535
[46]
Barac, M., Vucic, T., Zilic, S., Pesic, M., Sokovic, M., Petrovic, J., Kostic, A., Ignjatovic, I.S. and Milincic, D. (2019) The Effect of in Vitro Digestion on Antioxidant, ACE-Inhibitory and Antimicrobial Potentials of Traditional Serbian White-Brined Cheeses. Foods, 8, 94. https://doi.org/10.3390/foods8030094
[47]
Abd El-Fattah, A., Sakr, S., El-Dieb, S.M. and Elkashef, H. (2017) Biological Activities of Lactobacilli Relevant to Cardiovascular Health in Skim Milk. Food Science and Biotechnology, 26, 1613-1623. https://doi.org/10.1007/s10068-017-0219-7
[48]
Abou-Soliman, N.H.I. (2020) The Impact of Using Some Adjunct Cultures on the Quality of Fermented Camel Milk Fortified with Iron. Journal of Food and Dairy Science, Mansoura University, 11, 251-257. https://doi.org/10.21608/jfds.2020.118364
[49]
Walters, M.E., Esfandi, R. and Tsopmo, A. (2018) Potential of Food Hydrolyzed Proteins and Peptides to Chelate Iron or Calcium and Enhance Their Absorption. Foods, 7, 172. https://doi.org/10.3390/foods7100172
[50]
Zhang, T., Li, Y., Miao, M. and Jiang, B. (2011) Purification and Characterisation of a New Antioxidant Peptide from Chickpea (Cicer arietium L.) Protein Hydrolysates. Food Chemistry, 128, 28-33. https://doi.org/10.1016/j.foodchem.2011.02.072
[51]
Zhu, K.X., Su, C.Y., Guo, X.N., Peng, W. and Zhou, H.M. (2011) Influence of Ultrasound during Wheat Gluten Hydrolysis on the Antioxidant Activities of the Resulting Hydrolysate. International Journal of Food Science and Technology, 46, 1053-1059. https://doi.org/10.1111/j.1365-2621.2011.02585.x
[52]
Putri, Y.D., Setianim, N.A. and Warya, S. (2020) The Effect of Temperature, Incubation and Storage Time on Lactic Acid Content, pH and Viscosity of Goat Milk Kefir. Current Research on Biosciences and Biotechnology, 2, 101-104. https://doi.org/10.5614/crbb.2020.2.1/HPMQ5042
[53]
Fguiri, I., Ziadi, M., Abassi, M., Arroum, S. and Khorchani, T. (2012) Suitability of Camel Milk to Transformation in Leben by Lactic Starter. African Journal of Microbiology Research, 6, 7185-7192.
[54]
Kavas, N. (2016) Yoghurt Production from Camel (Camelus dramedarius) Milk Fortified with Samphire Molasses and Different Colloids. Mljekarstvo, 66, 34-47. https://doi.org/10.9734/BJAST/2016/23683
[55]
Buffa, M., Morais, J., Jiménez-Belenguer, A., Hernández-Giménez, E. and Guamis, B. (2005) Technological Characterization of Lactic Acid Bacteria Isolated from Raw Ewes’ Milk for Cheese Making. Milchwissenschaft, 61, 404-407.
[56]
Amani, E., Eskandari, M.H. and Shekarforoush, S. (2017) The Effect of Proteolytic Activity of Starter Cultures on Technologically Important Properties of Yogurt. Food Science & Nutrition, 5, 525-537. https://doi.org/10.1002/fsn3.427