|
- 2018
DNA–Nanoparticle Composites Synergistically Enhance Organophosphate Hydrolase Enzymatic ActivityDOI: https://doi.org/10.1021/acsanm.8b00933 Abstract: Cell-free synthetic biology relies on optimally exploiting enzymatic activity, and recent demonstrations that nanoparticle (NP) and DNA scaffolding can enhance enzyme activity suggest new avenues toward this. A modular architecture consisting of a DNA cage displaying semiconductor quantum dots (QDs) that, in turn, ratiometrically display the organophosphate hydrolase phosphotriesterase (PTE) was utilized as a model system. Increasing DNA cage concentration relative to QD-PTE and creating a dense composite enhanced PTE rates up to 12.5-fold, suggesting strong synergy between the NP and DNA components; this putatively arises from increased enzymatic stability and alleviation of its rate-limiting step. Such bioinorganic composites may offer new scaffolding approaches for synthetic biology
|