全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In2Se3

DOI: https://doi.org/10.1021/acsnano.8b02152

Full-Text   Cite this paper   Add to My Lib

Abstract:

Piezoelectric materials have been widely used for sensors, actuators, electronics, and energy conversion. Two-dimensional (2D) ultrathin semiconductors, such as monolayer h-BN and MoS2 with their atom-level geometry, are currently emerging as new and attractive members of the piezoelectric family. However, their piezoelectric polarization is commonly limited to the in-plane direction of odd-number ultrathin layers, largely restricting their application in integrated nanoelectromechanical systems. Recently, theoretical calculations have predicted the existence of out-of-plane and in-plane piezoelectricity in monolayer α-In2Se3. Here, we experimentally report the coexistence of out-of-plane and in-plane piezoelectricity in monolayer to bulk α-In2Se3, attributed to their noncentrosymmetry originating from the hexagonal stacking. Specifically, the corresponding d33 piezoelectric coefficient of α-In2Se3 increases from 0.34 pm/V (monolayer) to 5.6 pm/V (bulk) without any odd–even effect. In addition, we also demonstrate a type of α-In2Se3-based flexible piezoelectric nanogenerator as an energy-harvesting cell and electronic skin. The out-of-plane and in-plane piezoelectricity in α-In2Se3 flakes offers an opportunity to enable both directional and nondirectional piezoelectric devices to be applicable for self-powered systems and adaptive and strain-tunable electronics/optoelectronics

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133