全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于随机森林的高分辨率 PM2.5 遥感反演 ——以广东省为例

Keywords: 随机森林,机器学习,PM2.5 遥感反演,克里金插值,均方根误差

Full-Text   Cite this paper   Add to My Lib

Abstract:

细颗粒物(PM2.5)监测是大气污染治理的重要手段,受限于地面观测点的数量,从遥感反演 PM2.5 是常规地面观测的有效补充,是当前的研究热点。通常遥感反演 PM2.5 的思路是先反演大气气溶胶光学厚度,然后基于统计关系由大气气溶胶光学厚度反演 PM2.5。该方法容易造成误差传递,从而 导致反演模型的不稳定。该文提出了一种基于随机森林算法(一种机器学习算法)的 PM2.5 遥感反演方法,直接建立中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)影像与地 面实测 PM2.5 的关系,可以避免传统反演 PM2.5 时先反演大气气溶胶光学厚度带来的误差,最终得到精度更高的 PM2.5 反演结果。该方法先用随机森林算法对 MODIS 影像和经过克里金插值后的地面监测站PM2.5 数据进行训练和测试;然后,根据测试的均方根误差从多个模型中选取最优(均方根误差最小)的模型;最后,将此模型用于整幅 MODIS 影像,得到整个区域的 PM2.5 反演结果。实验选取了广东省 四个季节多幅 MODIS 影像数据进行验证,并通过决定系数和均方根误差两个表现指标进行对比和分析,验证了所提算法的优越性

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133