%0 Journal Article %T 基于随机森林的高分辨率 PM2.5 遥感反演 ——以广东省为例 %J - %D 2018 %X 细颗粒物(PM2.5)监测是大气污染治理的重要手段,受限于地面观测点的数量,从遥感反演 PM2.5 是常规地面观测的有效补充,是当前的研究热点。通常遥感反演 PM2.5 的思路是先反演大气气溶胶光学厚度,然后基于统计关系由大气气溶胶光学厚度反演 PM2.5。该方法容易造成误差传递,从而 导致反演模型的不稳定。该文提出了一种基于随机森林算法(一种机器学习算法)的 PM2.5 遥感反演方法,直接建立中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)影像与地 面实测 PM2.5 的关系,可以避免传统反演 PM2.5 时先反演大气气溶胶光学厚度带来的误差,最终得到精度更高的 PM2.5 反演结果。该方法先用随机森林算法对 MODIS 影像和经过克里金插值后的地面监测站PM2.5 数据进行训练和测试;然后,根据测试的均方根误差从多个模型中选取最优(均方根误差最小)的模型;最后,将此模型用于整幅 MODIS 影像,得到整个区域的 PM2.5 反演结果。实验选取了广东省 四个季节多幅 MODIS 影像数据进行验证,并通过决定系数和均方根误差两个表现指标进行对比和分析,验证了所提算法的优越性 %K 随机森林 %K 机器学习 %K PM2.5 遥感反演 %K 克里金插值 %K 均方根误差 %U http://jcjs.siat.ac.cn/ch/reader/view_abstract.aspx?file_no=201803004&flag=1