全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hepatic Protective Effects of S-Allyl-L-Cysteine (SAC) in Rats with Carbon Tetrachloride (CCl4) Induced Liver Injury

DOI: 10.4236/fns.2020.1112074, PP. 1053-1069

Keywords: S-Allyl-L-Cysteine (SAC), Garlic, Hepatic Protective Effects, Carbon Tetrachloride, Rats, Hepatic Steatosis, Cytochrome P4502E1

Full-Text   Cite this paper   Add to My Lib

Abstract:

S-allyl-L-cysteine (SAC) is an organosulfur compound derived from aged garlic extract (AGE). Studies have reported that AGE possesses bioprotective capacity, including antidiabetic, antimicrobial, antioxidant, and antitumor effects. The present study examined the protective effects of SAC against carbon tetrachloride (CCl4) induced hepatotoxicity in rats. Ten male Wistar rats aged 11 - 12 weeks were randomly divided into two groups (five rats/group) as control and SAC groups. All rats had ad libitum access to water, and the SAC group received water containing SAC intragastrically (200 mg/kg) once daily for five consecutive weeks. In the fifth experimental week, 50% CCl4 in olive oil (1 mL/kg) was administered intraperitoneally three times a week to induce liver injury in both groups. Rats were sacrificed at 24 hours after the last CCl4 injection, and liver tissues were excised for histopathological, immunohistochemical and antioxidant analyses. The rats in the SAC group did not show abnormal behavior, such as decreased water intake or food consumption, during the experimental period. Body weights in all groups did not change significantly over the experimental period. Histopathological analysis showed that the percentage of hepatic steatosis was lower in the SAC group at 12.75% ± 3.74% compared to 24.64% ± 5.29% in the control group (

References

[1]  Gong, Z., Ye, H., Huo, Y., Wang, L., Huang, Y., Huang, M. and Yuan, X. (2018) S-Allyl-Cysteine Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Rats by Targeting STAT3/SMAD3 Pathway. American Journal of Translational Research, 10, 1337.
[2]  Kodai, S., Takemura, S., Minamiyama, Y., Hai, S., Yamamoto. S., Kubo, S., Yoshida, Y., Niki, E., Okada, S., Hirohashi, K. and Suehiro, S. (2007) S-Allyl Cysteine Prevents CCl4-Induced Acute Liver Injury in Rats. Free Radical Research, 41, 489-497.
https://doi.org/10.1080/10715760601118361
[3]  Chen, P., Hu, M., Liu, F., Yu, H. and Chen, C. (2019) S-Allyl-L-Cysteine (SAC) Protects Hepatocytes from Alcohol-Induced Apoptosis. FEBS Open Bio, 9, 1327-1336.
https://doi.org/10.1002/2211-5463.12684
[4]  Sid, B., Verrax, J. and Calderon, P.B. (2013) Role of Oxidative Stress in the Pathogenesis of Alcohol-Induced Liver Disease. Free Radical Research, 47, 894-904.
https://doi.org/10.3109/10715762.2013.819428
[5]  Recknagel, R.O., Glende Jr., E.A., Dolak, J.A. and Waller, R.L. (1989) Mechanisms of Carbon Tetrachloride Toxicity. Pharmacology & Therapeutics, 43, 139-154.
https://doi.org/10.1016/0163-7258(89)90050-8
[6]  Manibusan, M.K., Odin, M. and Eastmond, D.A. (2007) Postulated Carbon Tetrachloride Mode of Action: A Review. Journal of Environmental Science and Health, Part C, 25, 185-209.
https://doi.org/10.1080/10590500701569398
[7]  McCay, P.B., Lai, E.K., Poyer, J.L., DuBose, C.M. and Janzen, E.G. (1984) Oxygen- and Carbon-Centered Free Radical Formation during Carbon Tetrachloride Metabolism. Observation of Lipid Radicals in Vivo and in Vitro. The Journal of Biological Chemistry, 259, 2135-2143.
[8]  Cederbaum, A.I. (2017) Role of Cytochrome P450 and Oxidative Stress in Alcohol-Induced Liver Injury. Reactive Oxygen Species, 4, 303-319.
https://doi.org/10.20455/ros.2017.851
[9]  Zangar, R.C., Benson, J.M., Burnett, V.L. and Springer, D.L. (2000) Cytochrome P4502E1 Is the Primary Enzyme Responsible for Low-Dose Carbon Tetra Chloride Metabolism in Human Liver Microsomes. Chemico-Biological Interactions, 125, 233-243.
https://doi.org/10.1016/S0009-2797(00)00149-6
[10]  Brunt, E.M. (2007) Pathology of Fatty Liver Disease. Modern Pathology, 20, S40-S48.
https://doi.org/10.1038/modpathol.3800680
[11]  Lee, C.P., Shih, P.H., Hsu, C.L. and Yen, G.C. (2007) Hepatoprotection of Tea Seed oil (Camellia oleifera Abel.) against CCl4-Induced Oxidative Damage in Rats. Food and Chemical Toxicology, 45, 888-895.
https://doi.org/10.1016/j.fct.2006.11.007
[12]  Ayaz, E. and Alpsoy, H.C. (2007) Garlic (Allium sativum) and Traditional Medicine. Türkiye Parazitoloji Dergisi, 31, 145-149.
[13]  Ahmad, M.S. and Ahmed, N. (2006) Antiglycation Properties of Aged Garlic Extract: Possible Role in Prevention of Diabetic Complications. The Journal of Nutrition, 136, 796S-799S.
https://doi.org/10.1093/jn/136.3.796S
[14]  Ariga, T. and Seki, T. (2006) Antithrombotic and Anticancer Effects of Garlic-Derived Sulfur Compounds: A Review. BioFactors, 26, 93-103.
https://doi.org/10.1002/biof.5520260201
[15]  Kodera, Y., Ushijima, M., Amano, H., Suzuki, J.I. and Matsutomo, T. (2017) Chemical and Biological Properties of S-1-Propenyl-L-Cysteine in Aged Garlic Extract. Molecules, 22, 570.
https://doi.org/10.3390/molecules22040570
[16]  Colín-González, A.L., Santana, R.A., Silva-Islas, C.A., Chánez-Cárdenas, M.E., Santamaría, A. and Maldonado, P.D. (2012) The Antioxidant Mechanisms Underlying the Aged Garlic Extract and S-Allyl-Cysteine-Induced Protection. Oxidative Medicine and Cellular Longevity, 2012, Article ID: 907162.
https://doi.org/10.1155/2012/907162
[17]  Amagase, H., Petesch, B.L., Matsuura, H., Kasuga, S. and Itakura, Y. (2001) Intake of Garlic and Its Bioactive Components. The Journal of Nutrition, 131, 955S-962S.
https://doi.org/10.1093/jn/131.3.955S
[18]  Ahmad, M.S., Pischetsrieder, M. and Ahmed, N. (2007) Aged Garlic Extract and S-Allyl Cysteine Prevent Formation of Advanced Glycation Endproducts. European Journal of Pharmacology, 561, 32-38.
https://doi.org/10.1016/j.ejphar.2007.01.041
[19]  E, Abdel. Moneim. A. (2015) Oxidant/Antioxidant Imbalance and the Risk of Alzheimer’s Disease. Current Alzheimer Research, 12, 335-349.
https://doi.org/10.2174/1567205012666150325182702
[20]  Kim, J.M., Chang, N., Kim, W.K. and Chun, H.S. (2006) Dietary S-Allyl-L-Cysteine Reduces Mortality with Decreased Incidence of Stroke and Behavioral Changes in Stroke-Prone Spontaneously Hypertensive Rats. Bioscience, Biotechnology, and Biochemistry, 70, 1969-1971.
https://doi.org/10.1271/bbb.50697
[21]  Ried, K., Toben, C. and Fakler, P. (2013) Effect of Garlic on Serum Lipids: An Updated Meta-Analysis. Nutrition Reviews, 71, 282-299.
https://doi.org/10.1111/nure.12012
[22]  Geng, Z., Rong, Y. and Lau, B.H. (1997) S-Allyl Cysteine Inhibits Activation of Nuclear Factor Kappa B in Human T Cells. Free Radical Biology and Medicine, 23, 345-350.
https://doi.org/10.1016/S0891-5849(97)00006-3
[23]  Sundaresan, S. and Subramanian, P. (2003) S-Allylcysteine Inhibits Circulatory Lipid Peroxidation and Promotes Antioxidants in N-Nitrosodiethylamine-Induced Carcinogenesis. Polish Journal of Pharmacology, 55, 37-42.
[24]  Hsu, C.C., Lin, C.C., Liao, T.S. and Yin, M.C. (2006) Protective Effect of S-Allyl Cysteine and S-Propyl Cysteine on Acetaminophen-Induced Hepatotoxicity in Mice. Food and Chemical Toxicology, 44, 393-397.
https://doi.org/10.1016/j.fct.2005.08.012
[25]  Casanova, A.G., Vicente-Vicente, L., Hernández-Sánchez, M.T., Pescador, M., Prieto, M., Martínez-Salgado, C., Morales, A.I. and López-Hernández, F.J. (2017) Key Role of Oxidative Stress in Animal Models of Aminoglycoside Nephrotoxicity Revealed by a Systematic Analysis of the Antioxidant-to-Nephroprotective Correlation. Toxicology, 385, 10-17.
https://doi.org/10.1016/j.tox.2017.04.015
[26]  Padmanabhan, M. and Prince, P.S. (2006) Preventive Effect of S-Allyl-Cysteine on Lipid Peroxides and Antioxidants in Normal and Isoproterenol-Induced Cardiotoxicity in Rats: A Histopathological Study. Toxicology, 224, 128-137.
https://doi.org/10.1016/j.tox.2006.04.039
[27]  Baradaran, A. and Rafieian-Kopaei, M. (2013) Histopathological Study of the Combination of Metformin and Garlic Juice for the Attenuation of Gentamicin Renal Toxicity in Rats. Journal of Renal Injury Prevention, 2, 15.
[28]  Sundaresan, S. and Subramanian, P. (2008) Prevention of N-Nitrosodiethylamine-Induced Hepatocarcinogenesis by S-Allylcysteine. Molecular and Cellular Biochemistry, 310, 209-214.
https://doi.org/10.1007/s11010-007-9682-4
[29]  Beauchamp, C. and Fridovich, I. (1971) Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Analytical Biochemistry, 44, 276-287.
https://doi.org/10.1016/0003-2697(71)90370-8
[30]  Aebi, H. (1984) Catalase in Vitro. Methods in Enzymology, 105, 121-126.
https://doi.org/10.1016/S0076-6879(84)05016-3
[31]  Hissin, P.J. and Hilf, R. (1976) A Fluorometric Method for Determination of Oxidized and Reduced Glutathione in Tissues. Analytical Biochemistry, 74, 214-226.
https://doi.org/10.1016/0003-2697(76)90326-2
[32]  Gerber, I.B. and Dubery, I.A. (2003) Fluorescence Microplate Assay for the Detection of Oxidative Burst Products in Tobacco Cell Suspensions Using 2',7'-Dichloro-fluorescein. Methods in Cell Science, 25, 115-122.
https://doi.org/10.1007/s11022-004-3851-6
[33]  Myhre, O., Andersen, J.M., Aarnes, H. and Fonnum, F. (2003) Evaluation of the Probes 2',7'-Dichlorofluorescin Diacetate, Luminol, and Lucigenin as Indicators of Reactive Species Formation. Biochemical Pharmacology, 65, 1575-1582.
https://doi.org/10.1016/S0006-2952(03)00083-2
[34]  Yim, M.B., Chock, P.B. and Stadtman, E.R. (1990) Copper, Zinc Superoxide Dismutase Catalyzes Hydroxyl Radical Production from Hydrogen Peroxide. Proceedings of the National Academy of Sciences of the United States of America, 87, 5006-5010.
https://doi.org/10.1073/pnas.87.13.5006
[35]  Harris, E.D. (1992) Regulation of Antioxidant Enzymes. FASEB Journal, 6, 2675-2683.
https://doi.org/10.1096/fasebj.6.9.1612291
[36]  Dierickx, P.J., Nuffel, G.V. and Alvarez, I. (1999) Glutathione Protection against Hydro Gen Peroxide, Tert-Butyl Hydroperoxide and Diamide Cytotoxicity in Rat Hepatoma-Derived Fa32 Cells. Human & Experimental Toxicology, 18, 627-633.
https://doi.org/10.1191/096032799678839482
[37]  Kadiiska, M.B., Gladen, B.C., Baird, D.D., Dikalova, A.E., Sohal, R.S., Hatch, G.E., Jones, D.P., Mason, R.P. and Barrett, J.C. (2000) Biomarkers of Oxidative Stress Study: Are Plasma Antioxidants Markers of CCl4 Poisoning? Free Radical Biology and Medicine, 28, 838-845.
https://doi.org/10.1016/S0891-5849(00)00198-2
[38]  Acworth, I.N., McCabe, D.R. and Maher, T.J. (2017) The Analysis of Free Radicals, Their Reaction Products, and Antioxidants. In: Baskin, S. and Salem, H., Eds., Oxidants, Antioxidants and Free Radicals, Routledge, Boca Raton, 23-77.
https://doi.org/10.1201/9780203744673-2
[39]  Guayerbas, N., Puerto, M., Ferrandez, M.D. and De La Fuente, M. (2002) A Diet Supplemented with Thiolic Anti-Oxidants Improves Leucocyte Function in Two Strains of Prematurely Ageing Mice. Clinical and Experimental Pharmacology and Physiology, 29, 1009-1014.
https://doi.org/10.1046/j.1440-1681.2002.03758.x
[40]  McCarty, M.F. and DiNicolantonio, J.J. (2015) An Increased Need for Dietary Cysteine in Support of Glutathione Synthesis May Underlie the Increased Risk for Mortality Associated with Low Protein Intake in the Elderly. Age, 37, Article No. 96.
https://doi.org/10.1007/s11357-015-9823-8
[41]  Grudzien, M. and Rapak, A. (2018) Effect of Natural Compounds on NK Cell Activation. Journal of Immunology Research, 2018, Article ID: 4868417
https://doi.org/10.1155/2018/4868417
[42]  Kho, A., Choi, B., Lee, S., Hong, D., Lee, S., Jeong, J., Park, K.H., Song, H., Choi, H. and Suh, S. (2018) Effects of Protocatechuic Acid (PCA) on Global Cerebral Ischemia-Induced Hippocampal Neuronal Death. International Journal of Molecular Sciences, 19, 1420.
https://doi.org/10.3390/ijms19051420
[43]  Fujiwara, N., Som, A.T., Pham, L.-D., Lee, B.J., Mandeville, E.T., Lo, E.H. and Arai, K. (2016) A Free Radical Scavenger Edaravone Suppresses Systemic Inflammatory Responses in a Rat Transient Focal Ischemia Model. Neuroscience Letters, 633, 7-13.
https://doi.org/10.1016/j.neulet.2016.08.048
[44]  Suzuki, H., Matsumori, A., Matoba, Y., Kyu, B.S., Tanaka, A., Fujita, J. and Sasayama, S. (1993) Enhanced Expression of Superoxide Dismutase Messenger RNA in viral Myocarditis. An SH-Dependent Reduction of Its Expression and Myocardial Injury. Journal of Clinical Investigation, 91, 2727-2733.
https://doi.org/10.1172/JCI116513
[45]  Liu, J.Y., Chen, C.C., Wang, W.H., Hsu, J.D., Yang, M.Y. and Wang, C.J. (2006) The Protective Effects of Hibiscus sabdariffa Extract on CCl4-Induced Liver Fibrosis in Rats. Food and Chemical Toxicology, 44, 336-343.
https://doi.org/10.1016/j.fct.2005.08.003
[46]  Paradis, V., Kollinger, M., Fabre, M., Holstege, A., Poynard, T. and Bedossa, P. (1997) In Situ Detection of Lipid Peroxidation By-Products in Chronic Liver Diseases. Hepatology, 26, 135-142.
https://doi.org/10.1002/hep.510260118
[47]  Davenport, D.M. and Wargovich, M.J. (2005) Modulation of Cytochrome P450 Enzymes by Organosulfur Compounds from Garlic. Food and Chemical Toxicology, 43, 1753-1762.
https://doi.org/10.1016/j.fct.2005.05.018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133