全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Long Term Benefit of Autologous Bone Marrow Stem Cell Transplantation without Immunosuppression in Chronic Type 1 Diabetic Patients

DOI: 10.4236/scd.2020.101001, PP. 1-14

Keywords: Type 1 Diabetes, Bone Marrow Transplantation, Bone Marrow Stem Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background:Autologous bone marrow stem cell transplantation without immune suppression has been proposed as a safe and efficient therapeutic option to replace β-cell mass destroyed by specific antibodies in chronic type 1 diabetes but we have not scientific information about how long the metabolic stability is maintained. Material and Method: From 2010 to 2014, were included 134 chronic type 1 diabetics patients (p.) in an autologous bone marrow stem cell transplantation protocol, stimulated with filgrastim, without immune suppression, c peptide < 0.5 ng/ml and pancreatic antibodies negatives, without diabetes complications. 65 Female and 69 Male patients, with 36 + 20 years old and insulin-dependent were treated. Follow up variables, c peptide, A1C, pancreatic islets and GAD antibodies and insulin dose at 6, 12, 24 and 36 months were performed. Results:C peptide, 6 months after transplantation more than 0.9 ng/ml in 61 patients (45%) (P = 0.001, CI = 95%). At 12 months 50 patients (37%) (P = 0.001, CI = 95%). At 24 months 53 patients (39%) (P = 0.001, CI = 95%). At 36 months 51 patients (38%) (P = 0.001, CI = 95%). A1C before transplant, <7% was observed in 25 p. (18%). At 6 months 68 p. (50%), 12 months 90 p. (67%), 24 months 92 p. (68%), at 36 months in 85 p. (63%) Patients without Insulin dose, at 6 months 61 p. (45%), 12 months 60 p. (44%), 24 months 58 p. (43%), at 36 months in 53 p. (39%). No evidence of new pancreatic antibodies or adverse events. Conclusion:Autologous bone marrow stem cell transplantation, without immunosuppression, improves pancreatic function and metabolic control without new immune reaction after three years of follow up in chronic type 1 diabetic patients.

References

[1]  Gianani, R., Campbell-Thompson, M., Sarkar, S.A., et al. (2010) Dimorphic Histopathology of Long-Standing Childhood-Onset Diabetes. Diabetologia, 53, 690-698.
https://doi.org/10.1007/s00125-009-1642-y
[2]  Madsbad, S., Krarup, T., Regeur, L., Faber, O.K. and Binder, C. (1980) Insulin Secretory Reserve in Insulin Dependent Patients at Time of Diagnosis and the First 180 Days of Insulin Treatment. Acta Endocrinologica, 95, 359-363.
https://doi.org/10.1530/acta.0.0950359
[3]  Steele, C., Hagopian, W.A., Gitelman, S., et al. (2004) Insulin Secretion in Type 1 Diabetes. Diabetes, 53, 426-433.
https://doi.org/10.2337/diabetes.53.2.426
[4]  Eff, C.H., Faber, O. and Deckert, T. (1978) Persistent Insulin Secretion, Assessed by Plasma C-Peptide Estimation in Long-Term Juvenile Diabetics with a Low Insulin Requirement. Diabetologia, 15, 169-172.
https://doi.org/10.1007/BF00421234
[5]  Nakanishi, K. and Watanabe, C. (2008) Rate of β-Cell Destruction in Type 1 Diabetes Influences the Development of Diabetic Retinopathy: Protective Effect of Residual β-Cell Function for More than 10 Years. The Journal of Clinical Endocrinology & Metabolism, 93, 4759-4766.
https://doi.org/10.1210/jc.2008-1209
[6]  Liu, E.H., Digon, B.J., Hirshberg, B., et al. (2009) Pancreatic Beta Cell Function Persists in Many Patients with Chronic Type 1 Diabetes, but Is Not Dramatically Improved by Prolonged Immunosuppression and Euglycaemia from a Beta Cell Allograft. Diabetologia, 52, 1369-1380.
https://doi.org/10.1007/s00125-009-1342-7
[7]  Madsbad, S., Faber, O.K., Binder, C., McNair, P., Christiansen, C. and Transbøl, I. (1978) Prevalence of Residual Beta-Cell Function in Insulin Dependent Diabetics in Relation to Age at Onset and Duration of Diabetes. Diabetes, 27, 262-264.
https://doi.org/10.2337/diab.27.1.S262
[8]  Ramiya, V.K., Maraist, M., Arfors, K.E., Schatz, D.A., Peck, A.B. and Cornelius, J.G. (2000) Reversal of Insulin-Dependent Diabetes Using Islets Generated in Vitro from Pancreatic Stem Cells. Nature Medicine, 6, 278-282.
https://doi.org/10.1038/73128
[9]  Dor, Y., Brown, J., Martinez, O.I. and Melton, D.A. (2004) Adult Pancreatic-Cells Are Formed by self-Duplication Rather than Stem-Cell Differentiation. Nature, 429, 41-46.
https://doi.org/10.1038/nature02520
[10]  De la Tour, D., Halvorsen, T., Demeterco, C., Tyrberg, B., Itkin-Ansari, P., Loy, M., Loo, S.J., Hao, E., Bossie, S. and Levine, F. (2001) Beta-Cell Differentiation from a Human Pancreatic Cell Line in Vitro and in Vivo. Molecular Endocrinology, 15, 476-483.
https://doi.org/10.1210/mend.15.3.0604
[11]  Chen, L.B., Jiang, X.B. and Yang, L. (2004) Differentiation of Rat Marrow Mesenchymal Stem Cells into Pancreatic Islet Beta-Cells. World Journal of Gastroenterology, 10, 3016-3020.
https://doi.org/10.3748/wjg.v10.i20.3016
[12]  Venstrom, J.M., McBride, M.A., Rother, K.I., Hirshberg, B., Orchard, T.J. and Harlan, D.M. (2003) Survival after Pancreas Transplantation in Subjects with Diabetes and Preserved Kidney Function. Journal of the American Medical Association, 290, 2817-2823.
https://doi.org/10.1001/jama.290.21.2817
[13]  Shapiro, A.M.J., Ricordi, C., Hering, B.J., Auchincloss, H., Lindblad, R., Robertson, R.P., Secchi, A., Brendel, M.D., Berney, T., Brennan, D.C., Cagliero, E., Alejandro, R., Ryan, E.A., DiMercurio, B., Morel, P., Polonsky, K.S., Reems, J.A., Bretzel, R.G., Bertuzzi, F., Froud, T., Kandaswamy, R., Sutherland, D.E.R., Eisenbarth, G., Segal, M., Preiksaitis, J., Korbutt, G.S., Barton, F.B., Viviano, L., Seyfert-Margolis, V., Bluestone, J. and Lakey, J.R.T. (2006) International Trial of the Edmonton Protocol for Islet Transplantation. The New England Journal of Medicine, 355, 1318-1330.
https://doi.org/10.1056/NEJMoa061267
[14]  Ianus, A., Holz, G., Theise, N.D. and Hussain, M. (2003) In Vivo Derivation of Glucose-Competent Pancreatic Endocrine Cells from Bone Marrow without Evidence of Cell Fusion. Journal of Clinical Investigation, 111, 843-850.
https://doi.org/10.1172/JCI200316502
[15]  Hakuno, D., Fukuda, K., Makino, S., et al. (2002) Bone Marrow-Derived Regenerated Cardiomyocytes (CMG Cells) Express Functional Adrenergic and Muscarinic Receptors. Circulation, 105, 380-386.
https://doi.org/10.1161/hc0302.102593
[16]  Laflamme, M.A., Myerson, D., Saffitz, J.E. and Murry, C.E. (2000) Evidence for Cardiomyocyte Repopulation by Extracardiac Progenitors in Transplanted Human Hearts. Circulation Research, 90, 634-640.
https://doi.org/10.1161/01.RES.0000014822.62629.EB
[17]  Alison, M.R., Poulsom, R., Jeffery, R., Dhillon, A.P., Quaglia, A., Jacob, J., Novelli, M., Prentice, G., Williamson, J. and Wright, N.A. (2000) Hepatocytes from Non-Hepatic Adult Stem Cells. Nature, 406, 257.
https://doi.org/10.1038/35018642
[18]  Poulsom, R., Forbes, S.J., Hodivala-Dilke, K., Ryan, E., Wyles, S., Navaratnarasah, S., Jeffery, R., Hunt, T., Alison, M., Cook, T., Pusey, C. and Wright, N.A. (2001) Bone Marrow Contributes to Renal Parenchymal Turnover and Regeneration. The Journal of Pathology, 195, 229-235.
https://doi.org/10.1002/path.976
[19]  Messier, B. and Leblond, C. P. (1960) Cell Proliferation and Migration as Revealed by Radioautography after Injection of Thymidine-H3 into Male Rats and Mice. American Journal of Anatomy, 106, 247-285.
https://doi.org/10.1002/aja.1001060305
[20]  Bonner-Weir, S., Baxter, L.A., Schuppin, G.T. and Smith, F.E.A (1993) Second Pathway for Regeneration of Adult Exocrine and Endocrine Pancreas: A Possible Recapitulation of Embryonic Development. Diabetes, 42, 1715-1720.
https://doi.org/10.2337/diab.42.12.1715
[21]  Bonner-Weir, S. (2000) Life and Death of the Pancreatic Beta Cells. Trends in Endocrinology & Metabolism, 11, 375-378.
https://doi.org/10.1016/S1043-2760(00)00305-2
[22]  Finegood, D.T., Scaglia, L. and Bonner-Weir, S. (1995) Dynamics of Beta-Cell Mass in the Growing Rat Pancreas: Estimation with a Simple Mathematical Model. Diabetes, 44, 249-256.
[23]  Assmus, B., Schächinger, V. and Teupe, C. (2002) Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106, 3009-3017.
https://doi.org/10.1161/01.CIR.0000043246.74879.CD
[24]  Strauer, B.E., Brehm, M., Zeus, T., Kostering, M., Hernández, A., Sorg, R.V., et al. (2002) Repair of Infarcted Myocardium by Autologous Intracoronary Mononuclear Bone Marrow Cell Transplantation in Humans. Circulation, 106, 1913-1918.
https://doi.org/10.1161/01.CIR.0000034046.87607.1C
[25]  Fernández-Avilés, F., San Román, J.A., García-Frade, J., Fernández, M.E., Penarrubia, M.J., De la Fuente, L., et al. (2004) Experimental and Clinical Regenerative Capability of Human Bone Marrow Cells after Myocardial Infarction. Circulation Research, 95, 742-748.
https://doi.org/10.1161/01.RES.0000144798.54040.ed
[26]  Wollert, K.C., Meyer, G.P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004) Intracoronary Autologous Bone-Marrow Cell Transfer after Myocardial Infarction: The BOOST Randomised Controlled Clinical Trial. Lancet, 364, 141-148.
https://doi.org/10.1016/S0140-6736(04)16626-9
[27]  Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006) Intracoronary Bone Marrow-Derived Progenitor Cells in Acute Myocardial Infarction. The New England Journal of Medicine, 355, 1210-1221.
https://doi.org/10.1056/NEJMoa060186
[28]  Hahn, T., Wall, D., Camitta, B., et al. (2005) The Role of Cytotoxic Therapy with Hematopoietic Stem Cell Transplantation in the Therapy of Acute Lymphoblastic Leukemia in Children: An Evidence-Based Review. Biology of Blood and Marrow Transplantation, 11, 823-861.
https://doi.org/10.1016/j.bbmt.2005.08.035
[29]  Sanders, J.E., Im, H.J., Hoffmeister, P.A., et al. (2005) Allogeneic Hematopoietic Stem Cell Transplantation for Infants with Acute Lymphoblastic Leukemia. Blood, 105, 3749-3756.
https://doi.org/10.1182/blood-2004-08-3312
[30]  Centeno, C.J., Schultz, J.R., Cheever, M., Robinson, B., Freeman, M. and Marasco, W. (2010) Safety and Complications Reporting on the Re-Implantation of Culture-Expanded Mesenchymal Stem Cells Using Autologous Platelet Lysate Technique. Current Stem Cell Research & Therapy, 5, 81-93.
https://doi.org/10.2174/157488810790442796
[31]  Ripoll, P.L., De Prado, M. and Yelo, J. (2009) Osteonecrosis of the Knee: Perfusion of Iliac Crest Mesenchymal Cells. Trauma, 20, 211-220.
[32]  Pesce, M., Orlandi, A., Iachininoto, M.G., Straino, S., Torella, A.R., Rizzut, V., et al. (2003) Myoendothelial Differentiation of Human Umbilical Cord Blood Derived Stem Cells in Ischemic Limb Tissues. Circulation Research, 93, 51-62.
https://doi.org/10.1161/01.RES.0000090624.04507.45
[33]  Vicario, J.H., Campo, C.D., Gerardo, L.E., Pfeffer, H., Ortega, H.H. and Agustín Yosviak, A. (2008) Angiogenesis in Severe Peripheral Arterial Disease with Intra-Arterial Administration of Unfractionated Autologous Bone Marrow. Phase I. Revista de la Federacion Argentina de Cardiologia, Buenos Aires.
[34]  Huang, P.P., Li, S.Z., Han, M.Z., Xiao, Z.J., Yang, R.C., Qiu, et al. (2004) Autologous Transplantation of Peripherals Blood Stem Cells as an Effective Therapeutic Approach for Severe Arteriosclerosis Obliterans of Lower Extremities. Journal of Thrombosis and Haemostasis, 91, 606-609.
https://doi.org/10.1160/TH03-06-0343
[35]  Huang, P., Li, S., Han, M., Xiao, Z., Yang, R. and Han, Z.C. (2005) Autologous Transplantation of Granulocyte Colony-Stimulating Factor-Mobilized Peripheral Mononuclear Cell Improves Critical Limb Ischemia in Diabetes. Diabetes Care, 28, 2155-2160.
https://doi.org/10.2337/diacare.28.9.2155
[36]  Couri, C., Oliveira, M., Stracieri, A., Moraes, D., Pieroni, F., Barros, G., Madeira, M.I., Malmegrim, K., Foss-Freitas, M., Simões, B., Martinez, E., Foss, M., Burt, R.K. and Voltarelli, J.C. (2009) C-Peptide Levels and Insulin Independence Following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA, 301, 1573-1579.
https://doi.org/10.1001/jama.2009.470
[37]  Gu, W.Q., Hu, J., Wang, W.Q., Li, L.R., Tang, W., Sun, S.Y., Cui, W.J., et al. (2012) Diabetic Ketoacidosis at Diagnosis Influences Complete Remission after Treatment with Hematopoietic Stem Cell Transplantation in Adolescents with Type 1 Diabetes. Diabetes Care, 35, 1413-1419.
https://doi.org/10.2337/dc11-2161
[38]  Fotino, C., Ricordi, C., Lauriola, V., Alejandro, R. and Pileggi, A. (2012) Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Insulin-Dependent Diabetes. The Review of Diabetic Studies, 7, 144-157.
https://doi.org/10.1900/RDS.2010.7.144
[39]  Mesples, A.D., Pretiñe, B. and Bellomo, R. (2007) Treatment of Type 1 Diabetes Mellitus with Pancreatic Implant of Autologous Adult Stem Cell. Endocrinología y Nutrición, 54, 512-518.
https://doi.org/10.1016/S1575-0922(07)71497-3
[40]  Mesples, A., Jiang, S., Zhang, Y., Luo, Z.X. and Hu, X. (2013) C-Peptide Increase in Chronic Type 1 Diabetic Patients Treated with Autologous Bone Marrow Cell Transplantation through Pancreatic Artery Catheterization: Three Years Follow-Up. Stem Cell Discovery, 3, 56-63.
https://doi.org/10.4236/scd.2013.31009
[41]  Sitio OMS, Press Release, November 18, 2004, Ginebra.
[42]  The Diabetes Control and Complications Trial Research Group (1993) The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 329, 977-986.
https://doi.org/10.1056/NEJM199309303291401
[43]  (1997) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 20, 1183-1197.
https://doi.org/10.2337/diacare.20.7.1183
[44]  Herman, W.H., Braffett, B.H., Kuo, S., Lee, J.M., Brandle, M., Jacobson, A.M., Lisa A., Lachin, J.M. and The Diabetes Control and Complications Trial/Epidemiology of Interventions and Complications (DCCT/EDIC) Research Group (2014) What Are the Clinical, Quality-of-Life, and Cost Consequences of 30 Years of Excellent vs. Poor Glycemic Control in Type 1 Diabetes? Diabetes Care, 37, 9-16.
[45]  Herman, W.H., Braffett, B.H., Kuo, S., Lee, J.M., Brandle, M., Jacobson, A.M., Lisa A. and Lachin, J.M. (2018) The 30-Year Cost-Effectiveness of Alternative Strategies to Achieve Excellent Glycemic Control in Type 1 Diabetes: An Economic Simulation Informed by the Results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC). Journal of Diabetes and its Complications, 32, 934-939.
https://doi.org/10.1016/j.jdiacomp.2018.06.005
[46]  El-Badawy, A. and El-Badri, N. (2016) Clinical Efficacy of Stem Cell Therapy for Diabetes Mellitus: A MetaAnalysis. PLoS ONE, 11, e0151938.
https://doi.org/10.1371/journal.pone.0151938
[47]  Cao, J.X., Zhao, Y.Q. and Ding, G.C. (2016) Evaluation of the Clinical Efficacy of Stem Cell Transplantation in Patients with Type 1 Diabetes Mellitus. International Journal of Clinical and Experimental Medicine, 9, 19034-19051.
[48]  Wang, Z.X., Cao, J.X., Li, D., Zhang, X.Y., Liu, J.L., Li, J.L., Wang, M., Liu, Y.X., Xu, B.L. and Wang, H.B. (2015) Clinical Efficacy of Autologous Stem Cell Transplantation for the Treatment of Patients with Type 2 Diabetes Mellitus: A Meta-Analysis. Cytotherapy, 17, 956-968.
https://doi.org/10.1016/j.jcyt.2015.02.014
[49]  Herreros, J., Chaques, J., Trainini, J., Ponton, A., Sarralde, A. and Genovese, J. (2011) Cardiac Cell Regeneration. Circle Cardiovascular, 18, 207-215.
https://doi.org/10.1016/S1134-0096(11)70056-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133