全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性色散方程的局部间断Petrov-Galerkin 方法
A Local Discontinuous Petrov-Galerkin Method for Nonlinear Dispersive Equations

DOI: 10.12677/IJFD.2020.84006, PP. 53-61

Keywords: 非线性色散偏微分方程,局部间断Petrov-Galerkin方法,紧孤子
Nonlinear Dispersive Equations
, Local Discontinuous Petrov-Galerkin Method, Compacton

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文给出数值求解非线性色散偏微分方程K(n, n)的一种方法。空间离散基于局部间断Petrov-Galerkin方法,时间离散基于三阶TVD Runge-Kutta方法。通过数值模拟试验证明该方法达到了最优收敛阶,能够较好地模拟紧孤子传播和碰撞等复杂波的相互作用。
In this paper, a numerical scheme is presented to solve the nonlinear dispersive K(n, n) equations. Spatial discretization is based on the local discontinuous Petrov-Galerkin method and temporal discretization is based on the third order accurate TVD Runge-Kutta scheme. Testing cases show that the present scheme achieves the optimal convergence order and complex wave interaction can be simulated well.

References

[1]  Rosenau, P. (2000) Compact and Noncompact Dispersive Patterns. Physics Letters A, 275, 193-203.
https://doi.org/10.1016/S0375-9601(00)00577-6
[2]  Rosenau, P. and Hyman, J.M. (1993) Compactons: Solitons with Finite Wavelength. Physics Letters, 70, 564-567.
https://doi.org/10.1103/PhysRevLett.70.564
[3]  de Frutos, J., Lopez-Marcos, M.A. and Sanz-Serna, J.M. (1995) A Finite Difference Scheme for the K(2,2) Compaton Equation. Journal of Computational Physics, 120, 248-252.
https://doi.org/10.1006/jcph.1995.1161
[4]  Ismail, M.S. and Taha, T.R. (1998) A Numerical Study of Compac-tons. Mathematics and Computers in Simulation, 47, 159-191.
https://doi.org/10.1016/S0378-4754(98)00132-3
[5]  Chertock, A. and Levy, D. (2002) Particle Methods for Dis-persive Equations. Journal of Computational Physics, 171, 491-499.
https://doi.org/10.1006/jcph.2001.6803
[6]  Chertock, A. and Levy, D. (2002) A Particle Method for the KdV Equation. Journal of Scientific Computing, 17, 491-499.
https://doi.org/10.1023/A:1015106210404
[7]  Degond, P. and Mustieles, F.J. (2001) A Deterministic Approximation of Diffusion Equations Using Particles. SIAM Journal on Scientific Computing, 16, 173-261.
[8]  Yan, J. and Shu, C.W. (2002) A Local Discontinuous Galerkin Method for KdV Type Equations. SIAM Journal on Numerical Analysis, 40, 769-791.
https://doi.org/10.1137/S0036142901390378
[9]  Yan, J. and Shu, C.W. (2002) Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives. Journal of Scientific Computing, 17, 27-47.
[10]  Levy, D., Yan, J. and Shu, C.W. (2004) Local Discontinuous Galerkin Methods for Nonlinear Dispersive Equations. Journal of Scientific Computing, 96, 751-772.
https://doi.org/10.1016/j.jcp.2003.11.013
[11]  Reed, W.H. and Hill, T.R. (1973) Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory Report LA-UR-73-479.
[12]  Cockburn, B. and Shu, C.W. (1991) The Runge-Kutta Local Projection P1-Discontinuous Galerkin Finite Element Method for Scalar Conservation Laws. Mathematical Modelling and Numerical Analysis, 25, 337-361.
https://doi.org/10.1051/m2an/1991250303371
[13]  Cockburn, B. and Shu, C.W. (1999) TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws III: General Framework. Mathematics of Computation, 52, 411-435.
https://doi.org/10.2307/2008474
[14]  Cockburn, B., Lin, S.Y. and Shu, C.W. (1989) The Runge-Kutta Local Pro-jection Discontinuous Galerkin Finite Element Method for Conservation Laws III: One-Dimensional Systems. Journal of Computational Physics, 84, 90-113.
https://doi.org/10.1016/0021-9991(89)90183-6
[15]  Cockburn, B. and Shu, C.W. (1999) The Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV: The Multidimensional Case. Mathematics of Computation, 54, 545-581.
https://doi.org/10.2307/2008501
[16]  Cockburn, B. and Shu, C.W. (1998) Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: General Framework Multidimensional Systems. Journal of Computational Physics, 141, 199-224.
https://doi.org/10.1006/jcph.1998.5892
[17]  Cockburn, B. and Shu, C.W. (2001) Runge-Kutta Discontinuous Ga-lerkin Method for Convection-Dominated Problems. Journal of Scientific Computing, 16, 173-261.
[18]  Li, R.H., Chen, Z. and Wu, W. (2000) Generalized Difference Methods for Differential Equations. Marcel Dekker, New York.
https://doi.org/10.1201/9781482270211
[19]  Baliga, B.R. and Patankar, S.V. (1980) A New Finite-Element For-mulation for Convection-Diffusion Problems. Numerical Heat Transfer, 3, 393-409.
https://doi.org/10.1080/01495728008961767
[20]  Chen, Z.X. (2006) On the Control Volume Finite Element Methods and Their Applications to Multiphase Flow. Networks and Heterogeneous Media, 1, 689-706.
https://doi.org/10.3934/nhm.2006.1.689
[21]  Chen, D.W. and Yu, X.J. (2009) RKCVDFEM for One-Dimensional Hyperbolic Conservation Laws. Chinese Journal of Computational Physics, 26, 501.
[22]  Chen, D.W., Yu, X.J. and Chen, Z.X. (2011) The Runge-Kutta Control Volume Discontinuous Finite Element Method for Systems of Hyperbolic Conservation Laws. International Journal for Numerical Methods in Fluids, 67, 711.
[23]  Zhao, G.Z., Yu, X.J. and Guo, P.Y. (2013) The Discontinuous Petrov-Galerkin Method for One-Dimensional Compressible Euler Equations in Lagrangian Coordinate. Chinese Physics B, 22, Article ID: 050206.
https://doi.org/10.1088/1674-1056/22/5/050206
[24]  Zhao, G.Z., Yu, X.J., Guo, P.Y. and Dong, Z.M. (2019) A Local Discontinuous Petrov-Galerkin Method for Partial Differential Equations with Higher Order Derivatives. Chinese Physics B, 36, 517-532.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133