|
非线性色散方程的局部间断Petrov-Galerkin 方法
|
Abstract:
本文给出数值求解非线性色散偏微分方程K(n, n)的一种方法。空间离散基于局部间断Petrov-Galerkin方法,时间离散基于三阶TVD Runge-Kutta方法。通过数值模拟试验证明该方法达到了最优收敛阶,能够较好地模拟紧孤子传播和碰撞等复杂波的相互作用。
In this paper, a numerical scheme is presented to solve the nonlinear dispersive K(n, n) equations. Spatial discretization is based on the local discontinuous Petrov-Galerkin method and temporal discretization is based on the third order accurate TVD Runge-Kutta scheme. Testing cases show that the present scheme achieves the optimal convergence order and complex wave interaction can be simulated well.
[1] | Rosenau, P. (2000) Compact and Noncompact Dispersive Patterns. Physics Letters A, 275, 193-203.
https://doi.org/10.1016/S0375-9601(00)00577-6 |
[2] | Rosenau, P. and Hyman, J.M. (1993) Compactons: Solitons with Finite Wavelength. Physics Letters, 70, 564-567.
https://doi.org/10.1103/PhysRevLett.70.564 |
[3] | de Frutos, J., Lopez-Marcos, M.A. and Sanz-Serna, J.M. (1995) A Finite Difference Scheme for the K(2,2) Compaton Equation. Journal of Computational Physics, 120, 248-252. https://doi.org/10.1006/jcph.1995.1161 |
[4] | Ismail, M.S. and Taha, T.R. (1998) A Numerical Study of Compac-tons. Mathematics and Computers in Simulation, 47, 159-191. https://doi.org/10.1016/S0378-4754(98)00132-3 |
[5] | Chertock, A. and Levy, D. (2002) Particle Methods for Dis-persive Equations. Journal of Computational Physics, 171, 491-499. https://doi.org/10.1006/jcph.2001.6803 |
[6] | Chertock, A. and Levy, D. (2002) A Particle Method for the KdV Equation. Journal of Scientific Computing, 17, 491-499. https://doi.org/10.1023/A:1015106210404 |
[7] | Degond, P. and Mustieles, F.J. (2001) A Deterministic Approximation of Diffusion Equations Using Particles. SIAM Journal on Scientific Computing, 16, 173-261. |
[8] | Yan, J. and Shu, C.W. (2002) A Local Discontinuous Galerkin Method for KdV Type Equations. SIAM Journal on Numerical Analysis, 40, 769-791. https://doi.org/10.1137/S0036142901390378 |
[9] | Yan, J. and Shu, C.W. (2002) Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives. Journal of Scientific Computing, 17, 27-47. |
[10] | Levy, D., Yan, J. and Shu, C.W. (2004) Local Discontinuous Galerkin Methods for Nonlinear Dispersive Equations. Journal of Scientific Computing, 96, 751-772. https://doi.org/10.1016/j.jcp.2003.11.013 |
[11] | Reed, W.H. and Hill, T.R. (1973) Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory Report LA-UR-73-479. |
[12] | Cockburn, B. and Shu, C.W. (1991) The Runge-Kutta Local Projection P1-Discontinuous Galerkin Finite Element Method for Scalar Conservation Laws. Mathematical Modelling and Numerical Analysis, 25, 337-361.
https://doi.org/10.1051/m2an/1991250303371 |
[13] | Cockburn, B. and Shu, C.W. (1999) TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws III: General Framework. Mathematics of Computation, 52, 411-435.
https://doi.org/10.2307/2008474 |
[14] | Cockburn, B., Lin, S.Y. and Shu, C.W. (1989) The Runge-Kutta Local Pro-jection Discontinuous Galerkin Finite Element Method for Conservation Laws III: One-Dimensional Systems. Journal of Computational Physics, 84, 90-113.
https://doi.org/10.1016/0021-9991(89)90183-6 |
[15] | Cockburn, B. and Shu, C.W. (1999) The Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV: The Multidimensional Case. Mathematics of Computation, 54, 545-581.
https://doi.org/10.2307/2008501 |
[16] | Cockburn, B. and Shu, C.W. (1998) Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: General Framework Multidimensional Systems. Journal of Computational Physics, 141, 199-224.
https://doi.org/10.1006/jcph.1998.5892 |
[17] | Cockburn, B. and Shu, C.W. (2001) Runge-Kutta Discontinuous Ga-lerkin Method for Convection-Dominated Problems. Journal of Scientific Computing, 16, 173-261. |
[18] | Li, R.H., Chen, Z. and Wu, W. (2000) Generalized Difference Methods for Differential Equations. Marcel Dekker, New York. https://doi.org/10.1201/9781482270211 |
[19] | Baliga, B.R. and Patankar, S.V. (1980) A New Finite-Element For-mulation for Convection-Diffusion Problems. Numerical Heat Transfer, 3, 393-409. https://doi.org/10.1080/01495728008961767 |
[20] | Chen, Z.X. (2006) On the Control Volume Finite Element Methods and Their Applications to Multiphase Flow. Networks and Heterogeneous Media, 1, 689-706. https://doi.org/10.3934/nhm.2006.1.689 |
[21] | Chen, D.W. and Yu, X.J. (2009) RKCVDFEM for One-Dimensional Hyperbolic Conservation Laws. Chinese Journal of Computational Physics, 26, 501. |
[22] | Chen, D.W., Yu, X.J. and Chen, Z.X. (2011) The Runge-Kutta Control Volume Discontinuous Finite Element Method for Systems of Hyperbolic Conservation Laws. International Journal for Numerical Methods in Fluids, 67, 711. |
[23] | Zhao, G.Z., Yu, X.J. and Guo, P.Y. (2013) The Discontinuous Petrov-Galerkin Method for One-Dimensional Compressible Euler Equations in Lagrangian Coordinate. Chinese Physics B, 22, Article ID: 050206.
https://doi.org/10.1088/1674-1056/22/5/050206 |
[24] | Zhao, G.Z., Yu, X.J., Guo, P.Y. and Dong, Z.M. (2019) A Local Discontinuous Petrov-Galerkin Method for Partial Differential Equations with Higher Order Derivatives. Chinese Physics B, 36, 517-532. |