%0 Journal Article
%T 非线性色散方程的局部间断Petrov-Galerkin 方法
A Local Discontinuous Petrov-Galerkin Method for Nonlinear Dispersive Equations
%A 苏晟洁
%A 高巍
%J International Journal of Fluid Dynamics
%P 53-61
%@ 2328-0549
%D 2020
%I Hans Publishing
%R 10.12677/IJFD.2020.84006
%X 本文给出数值求解非线性色散偏微分方程K(n, n)的一种方法。空间离散基于局部间断Petrov-Galerkin方法,时间离散基于三阶TVD Runge-Kutta方法。通过数值模拟试验证明该方法达到了最优收敛阶,能够较好地模拟紧孤子传播和碰撞等复杂波的相互作用。
In this paper, a numerical scheme is presented to solve the nonlinear dispersive K(n, n) equations. Spatial discretization is based on the local discontinuous Petrov-Galerkin method and temporal discretization is based on the third order accurate TVD Runge-Kutta scheme. Testing cases show that the present scheme achieves the optimal convergence order and complex wave interaction can be simulated well.
%K 非线性色散偏微分方程,局部间断Petrov-Galerkin方法,紧孤子
Nonlinear Dispersive Equations
%K Local Discontinuous Petrov-Galerkin Method
%K Compacton
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=38970