全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ag/AgCl@WO3/MIL-101可见光催化剂的合成及其光催化性能的研究
Preparation of Ag/AgCl@WO3/MIL-101 and Its Visible-Light Photocatalytic Performance

DOI: 10.12677/JAPC.2020.92002, PP. 13-22

Keywords: 金属有机骨架,Ag/AgCl,WO3,MIL-101,可见光,光催化剂
Metal Organic Framework
, Ag/AgCl, WO3, MIL-101, Visible Light, Photocatalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用微波辅助合成方法将WO3固载到金属有机骨架MIL-101(Cr)上,借助于沉积沉淀–光还原方法将Ag/AgCl和WO3/MIL-101复合在一起,制备出Ag/AgCl@WO3/MIL-101可见光催化剂。利用FT-IR、XRD、UV-Vis-DRS和XPS测试技术对该催化剂进行了表征。结果表明,Ag/AgCl和WO3的引入没有改变MIL-101的结构,催化剂在可见光区有强烈的光吸收。当WO3的负载量为0.3(w)%,Ag的负载量为3.4(w)%时,Ag/AgCl@WO3/MIL-101对70 mL 20 mg/L的罗丹明B溶液的降解率达到100%,并且该催化剂具有较好的稳定性。
Tungsten oxide (WO3) was supported on MIL-101(Cr), affording a hybrid material WO3/MIL-101 by a microwave-assisted deposition method. Then, the plasmonic Ag/AgCl@WO3/MIL-101 catalyst was prepared by the deposition-precipitation-photoreduction method and characterized by FT-IR, XRD, UV-Vis-DRS and XPS techniques. It was found that the structure of MIL-101 was well preserved after the introduction of WO3 and Ag/AgCl, which showed strong light absorption in the visible region. When the loadings of WO3 and Ag was 0.3(w)% and 3.4(w)%, Ag/AgCl@WO3/MIL-101 exhibited a high photocatalytic activity and good stability for the degradation of RhB under visible light irradiation.

References

[1]  Song, Y.-Y., Schmidt-Stein, F., Bauer, S., et al. (2009) Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. Journal of American Chemical Society, 131, 4230-4232.
https://doi.org/10.1021/ja810130h
[2]  Chen, X., Shen, S., Guo, L., et al. (2010) Semiconductor-Based Photoca-talytic Hydrogen Generation. Chemical Reviews, 110, 6503-6570.
https://doi.org/10.1021/cr1001645
[3]  Roy, P., Dey, T., Lee, K., et al. (2010) Size-Selective Separation of Macromolecules by Nanochannel Titania Membrane with Self-Cleaning (Declogging) Ability. Journal of American Chemical Society, 132, 7893-7895.
https://doi.org/10.1021/ja102712j
[4]  Murray, W.A. and Barnes, W.L. (2007) Plasmonic Materials. Advanced Materials, 19, 3771-3782.
https://doi.org/10.1002/adma.200700678
[5]  An, C., Peng, S. and Sun, Y. (2010) Facile Synthesis of Sun-light-Driven AgCl:Ag Plasmonic Nanophotocatalyst. Advanced Materials, 22, 2570-2574.
https://doi.org/10.1002/adma.200904116
[6]  Liu, J., Li, R., Hu, Y., et al. (2017) Harnessing Ag Nanofilm as an Electron Transfer Mediator for Enhanced Visible Light Photocatalytic Performance of Ag@AgCl/Ag Nanofilm/ZIF-8 Photocatalyst. Applied Catalysis B: Environmental, 202, 65-71.
https://doi.org/10.1016/j.apcatb.2016.09.015
[7]  Zuo, G.H., Wang, A.Q., Yang, Y., et al. (2020) Fabrication and Characterization of Ag/AgCl@ZIF-8 Hybrid Nanostructure and Used It as Photocatalyst for Degradation of Rhodamine B under Visible Light. Journal of Porous Materials, 27, 339-345.
https://doi.org/10.1007/s10934-019-00815-w
[8]  Li, W., Wang, X., Li, M., et al. (2020) Construction of Z-Scheme and p-n Heterostructure: Three-Dimensional Porous g-C3N4/Graphene Oxide-Ag/AgBr Composite for High-Efficient Hydrogen Evolution. Applied Catalysis B: Environmental, 268, Article ID: 118384.
https://doi.org/10.1016/j.apcatb.2019.118384
[9]  Xu, B.R., Li, Y.D., Gao, Y.Q., et al. (2019) Ag-AgI/Bi3O4Cl for Efficient Visible Light Photocatalytic Degradation of Methyl Orange: The Surface Plasmon Resonance Effect of Ag and Mechanism Insight. Applied Catalysis B: Environmental, 246, 140-148.
https://doi.org/10.1016/j.apcatb.2019.01.060
[10]  Wang, Y.F., Zhang, M., Li, J., et al. (2019) Construction of Ag@AgCl Decorated TiO2 Nanorod Array Film with Optimized Photoelectrochemical and Photocatalytic Performance. Applied Surface Science, 476, 84-93.
https://doi.org/10.1016/j.apsusc.2019.01.086
[11]  Abe, R., Takami, H., Murakami, N., et al. (2008) Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Pla-tinum-Loaded Tungsten Oxide. Journal of American Chemical Society, 130, 7780-7781.
https://doi.org/10.1021/ja800835q
[12]  Wang, P., Huang, B., Qin, X., et al. (2009) Ag/AgBr/WO3?H2O Visi-ble-Light Photocatalyst for Bacteria Destruction. Inoganic Chemisty, 48, 10697-10702.
https://doi.org/10.1021/ic9014652
[13]  Long, J.R. and Yaghi, O.M. (2009) The Pervasive Chemistry of Met-al-Organic Frameworks. Chemical Society Reviews, 38, 1213-1214.
https://doi.org/10.1039/b903811f
[14]  Llabrés, I., Xamena, F.X., Corma, A. and Garcia, H. (2007) Applications for Metal-Organic Frameworks (MOFs) as Quantum Dot Semiconductors. The Journal of Physical Chemistry C, 111, 80-85.
https://doi.org/10.1021/jp063600e
[15]  Du, J.J., Yuan, Y.P., Sun, J.X., et al. (2011) New Photocatalysts Based on MIL-53 Metal-Organic Frameworks for the Decolorization of Methylene Blue Dye. Journal Hazardous Materials, 190, 945-951.
https://doi.org/10.1016/j.jhazmat.2011.04.029
[16]  Wang, A., Zhou, Y., Wang, Z., et al. (2016) Titanium Incor-porated with UiO-66(Zr)-Type Metal-Organic Framework (MOF) for Photocatalytic Application. RSC Advances, 6, 3671-3679.
https://doi.org/10.1039/C5RA24135A
[17]  Abedi, S. and Morsali, A. (2015) Improved Photocatalytic Activity in a Surfactant-Assisted Synthesized Ti-Containing MOF Photocatalyst under Blue LED Irradiation. New Journal Chemistry, 39, 931-937.
https://doi.org/10.1039/C4NJ01536C
[18]  Yang, Z., Xu, X., Liang, X., et al. (2017) Construction of Heterostruc-tured MIL-125/Ag/g-C3N4 Nanocomposite as an Efficient Bifunctional Visible Light Photocatalyst for the Organic Oxidation and Reduction Reactions. Applied Catalysis B: Environmental, 205, 42-54.
https://doi.org/10.1016/j.apcatb.2016.12.012
[19]  Gao, S.T., Liu, W.H., Shang, N.Z., et al. (2014) Integration of a Plasmonic Semiconductor with a Metal-Organic Framework: A Case of Ag/AgCl@ZIF-8 with Enhanced Visible Light Photocatalytic Activity. RSC Advances, 4, 61736-61742.
https://doi.org/10.1039/C4RA11364K
[20]  Gao, S., Feng, T., Feng, C., et al. (2016) Novel Visible-Light-Responsive Ag/AgCl@MIL-101 Hybrid Materials with Synergistic Photocatalytic Activity. Journal of Colloid and Interface Science, 466, 284-290.
https://doi.org/10.1016/j.jcis.2015.12.045
[21]  Gao, J., Miao, J., Li, P.Z., et al. (2014) A p-Type Ti(IV)-Based Metal-Organic Framework with Visible-Light Photo-Response. Chemical Communications, 50, 3786-3788.
https://doi.org/10.1039/C3CC49440C
[22]  Fazaeli, R., Aliyan, H., Moghadam, M., et al. (2013) Nano-Rod Cata-lysts: Building MOF Bottles (MIL-101 Family as Heterogeneous Single-Site Catalysts) around Vanadium Oxide Ships. Journal of Molecular Catalysis A: Chemical, 374-375, 46-52.
https://doi.org/10.1016/j.molcata.2013.03.020
[23]  Férey, G., Mellot-Draznieks, C., Serre, C., et al. (2005) A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309, 2040-2042.
https://doi.org/10.1126/science.1116275
[24]  Xiang, Q., Yu, J., Cheng, B., et al. (2010) Microwave-Hydrothermal Preparation and Visible-Light Photoactivity of Plamonic Photocatalyst Ag-TiO2 Nanocomposite Hollow Spheres. Chemistry—An Asian Journal, 5, 1466-1474.
https://doi.org/10.1002/asia.200900695
[25]  Wu, T., Liu, S., Luo, Y., et al. (2011) Surface Plasmon Reson-ance-Induced Visible Light Photocatalytic Reduction of Graphene Oxide: Using Ag Nanoparticles as a Plasmonic Photocatalyst. Nanoscale, 3, 2142-2144.
https://doi.org/10.1039/c1nr10128e
[26]  Kazuma, E., Yamaguchi, T., Sakai, N., et al. (2011) Growth Behaviour and Plasmon Resonance Properties of Photocatalytically Deposited Cu Nanoparticles. Nanoscale, 3, 3641-3645.
https://doi.org/10.1039/c1nr10456j
[27]  Li, H., Sun, Y., Cai, B., et al. (2015) Hierarchically Z-Scheme Photoca-talyst of Ag@AgCl Decorated on BiVO4 (040) with Enhancing Photoelectrochemical and Photocatalytic Performance. Applied Catalysis B: Environmental, 170-171, 206-214.
https://doi.org/10.1016/j.apcatb.2015.01.043
[28]  Wu, J., Zhang, X., Liu, C., et al. (2017) One-Step Preparation of Nanostructured AgCl/Ag Photocatalyst Dispersed on Exfoliated Montmorillonite by Clay-Mediated in Situ Reduction. Applied Physics A, 123, 447.
https://doi.org/10.1007/s00339-017-1049-4
[29]  Zhou, Z., Long, M., Cai, W., et al. (2012) Synthesis and Photo-catalytic Performance of the Efficient Visible Light Photocatalyst Ag-AgCl/BiVO4. Journal of Molecular Catalysis A: Chemical, 353-354, 22-28.
https://doi.org/10.1016/j.molcata.2011.10.025
[30]  Ma, B., Guo, J., Dai, W.L., et al. (2012) Ag-AgCl/WO3 Hollow Sphere with Flower-Like Structure and Superior Visible Photocatalytic Activity. Applied Catalysis B: Environmental, 123-124, 193-199.
https://doi.org/10.1016/j.apcatb.2012.04.029
[31]  Xu, H., Yan, J., Xu, Y., et al. (2013) Novel Visible-Light-Driven AgX/Graphite-Like C3N4 (X = Br, I) Hybrid Materials with Synergistic Photocatalytic Activity. Applied Catalysis B: Environmental, 129, 182-193.
https://doi.org/10.1016/j.apcatb.2012.08.015
[32]  Liu, C., Yang, D., Yang, J., et al. (2013) Biomimetic Synthesis of TiO2-SiO2-Ag Nanocomposites with Enhanced Visible-Light Photocatalytic Activity. Applied Materials & Interfaces, 5, 3824-3832.
https://doi.org/10.1021/am4004733
[33]  Chen, C., Zhao, W., Li, J., et al. (2002) Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2 Dispersion. Environmental Science & Technology, 36, 3604-3611.
https://doi.org/10.1021/es0205434

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133