全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带Lévy跳的随机混杂互惠系统的渐近性态
Asymptotic Behavior of a Stochastic Hybrid Mutualism System with Lévy Jumps

DOI: 10.12677/PM.2020.106074, PP. 605-621

Keywords: 互惠系统,Markov切换,Lévy跳,随机持久,灭绝
Mutualism System
, Markovian Switching, Lévy Jump, Stochastic Permanence, Extinction

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论一类带Lévy跳和Markov切换的随机互惠系统的渐近性态。利用Lyapunov函数和随机分析工具,建立了系统的随机持久性、灭绝性和平均意义下的持续性。数值模拟验证了理论结果的合理性。
This paper is concerned with the asymptotic behavior of a stochastic mutualism system driven by Lévy jumps under Markovian switching. By using Lyapunov functions and some techniques in sto-chastic calculus, the sufficient conditions for stochastic permanence, extinction, and persistence in mean are established respectively. Finally, some numerical simulations are given to illustrate our theoretical results.

References

[1]  Gard, T.C. (1986) Stability for Multispecies Population Models in Random Environments. Nonlinear Analysis, 10, 1411-1419.
https://doi.org/10.1016/0362-546X(86)90111-2
[2]  Mao, X., Renshaw, E., and Marion, G. (2002) Environmental Brownian Noise Suppresses Explosions in Population Dynamics. Stochastic Processes and Their Ap-plications, 97, 95-110.
https://doi.org/10.1016/S0304-4149(01)00126-0
[3]  Rudnicki, R. and Pichór, K. (2007) Influence of Stochastic Perturbation on Prey-Predator Systems. Mathematical Biosciences, 206, 108-119.
https://doi.org/10.1016/j.mbs.2006.03.006
[4]  Ji, C., Jiang, D. and Shi, N. (2009) Analysis of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Stochastic Perturbation. Journal of Mathematical Analysis and Applications, 359, 482-498.
https://doi.org/10.1016/j.jmaa.2009.05.039
[5]  Mandal, P.S. and Banerjee, M. (2012) Stochastic Persistence and Stationary Distribution in a Holling-Tanner Type Prey-Predator Model. Physica A, 391, 1216-1233.
https://doi.org/10.1016/j.physa.2011.10.019
[6]  王克. 随机生物数学模型[M]. 北京: 科学出版社, 2010.
[7]  Li, X., Gray, A., Jiang, D. and Mao, X. (2011) Sufficient and Necessary Conditions of Stochastic Perma-nence and Extinction for Stochastic Logistic Populations under Regime Switching. Journal of Mathematical Analysis and Applications, 376, 11-28.
https://doi.org/10.1016/j.jmaa.2010.10.053
[8]  Settati, A. and Lahrouz, A. (2015) On Stochastic Gilpin-Ayala Population Model with Markovian Switching. Biosystems, 130, 17-27.
https://doi.org/10.1016/j.biosystems.2015.01.004
[9]  Yang, H., Li, X. and Yin, G. (2016) Permanence and Ergodicity of Stochastic Gilpin-Ayala Population Model with Regime Switching. Discrete and Continuous Dynamical Systems, 21, 3743-3766.
https://doi.org/10.3934/dcdsb.2016119
[10]  Bao, J., Mao, X., Yin, G., and Yuan, C. (2011) Competitive Lotka-Volterra Population Dynamics with Jumps. Nonlinear Analysis, 74, 6601-6616.
https://doi.org/10.1016/j.na.2011.06.043
[11]  Bao, J. and Yuan, C. (2012) Stochastic Population Dynamics Driven by Lévy Noise. Journal of Mathematical Analysis and Applications, 391, 363-375.
https://doi.org/10.1016/j.jmaa.2012.02.043
[12]  Liu, Q. and Liang, Y. (2014) Persistence and Extinction of a Stochastic Non-Autonomous Gilpin-Ayala System Driven by Lévy Noise. Communications in Nonlinear Science and Numerical Simulation, 19, 3745-3752.
https://doi.org/10.1016/j.cnsns.2014.02.027
[13]  Lu, C. and Ding, X. (2015) Persistence and Extinction of a Sto-chastic Gilpin-Ayala Model with Jumps. Mathematical Methods in the Applied Sciences, 38, 1200-1211.
https://doi.org/10.1002/mma.3143
[14]  Wu, R., Zou, X., Wang, K., and Liu, M. (2014) Stochastic Lotka-Volterra Systems under Regime Switching with Jumps. Filomat, 9, 1907-1928.
https://doi.org/10.2298/FIL1409907W
[15]  Zhao, Y. and Yuan, S. (2016) Stability in Distribution of a Stochastic Hybrid Competitive Lotka-Volterra Model with Lévy Jumps. Chaos, Solitons and Fractals, 85, 98-109.
https://doi.org/10.1016/j.chaos.2016.01.015
[16]  Boucher, D.H. (1985) The Biology of Mutualism: Ecology and Evolution. Oxford University Press, New York.
[17]  陈凤德, 谢向东. 合作种群模型动力学研究[M]. 北京: 科学出版社, 2014.
[18]  Graves, W.G., Peckham, B. and Pastor, J. (2006) A Bifurcation Analysis of a Differential Equa-tions Model for Mutualism. Bulletin of Mathematical Biology, 68, 1851-1872.
https://doi.org/10.1007/s11538-006-9070-3
[19]  向红, 张小兵, 孟新友. 一类互惠模型的持续生存与周期解[J]. 兰州交通大学学报, 2009, 28(4): 156-158.
[20]  吕敬亮. 几类随机生物种群模型性质的研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2011.
[21]  郭奥, 丁孝全. 一类非自治随机互惠系统的渐近性态[J]. 理论数学, 2019, 9(4): 514-526.
[22]  Ji, C. and Jing, D. (2012) Persistence and Non-Persistence of a Mutualism System with Stochastic Perturbation. Discrete and Continuous Dynamical Systems, 32, 867-889.
https://doi.org/10.3934/dcds.2012.32.867
[23]  Li, M., Gao, H., Sun, C. and Gong, Y. (2015) Analysis of a Mutu-alism Model with Stochastic Perturbations. International Journal of Biomathematics, 8, Article ID: 1550072.
https://doi.org/10.1142/S1793524515500722
[24]  Liu, M. and Wang, K. (2013) Analysis of a Stochastic Auton-omous Mutualism Model. Journal of Mathematical Analysis and Applications, 402, 392-403.
https://doi.org/10.1016/j.jmaa.2012.11.043
[25]  Guo, S. and Hu, Y. (2017) Asymptotic Behavior and Numerical Simulations of a Lotka-Volterra Mutualism System with White Noises. Advances in Difference Equations, 2017, Article No. 125.
https://doi.org/10.1186/s13662-017-1171-9
[26]  Han, Q. and Jiang, D. (2015) Periodic Solution for Stochastic Non-Autonomous Multispecies Lotka-Volterra Mutualism Type Ecosystem. Applied Mathematics and Computation, 262, 204-217.
https://doi.org/10.1016/j.amc.2015.04.042
[27]  Zhang, X., Jiang, D., Alsaedi, A. and Hayat, T. (2016) Periodic Solutions and Stationary Distribution of Mutualism Models in Random Environments. Physica A, 460, 270-282.
https://doi.org/10.1016/j.physa.2016.05.015
[28]  Wang, B., Gao, H. and Li, M. (2017) Analysis of a Non-Autonomous Mutualism Model Driven by Lévy Jumps. Discrete and Continuous Dynamical Systems—Series B, 21, 1189-1202.
https://doi.org/10.3934/dcdsb.2016.21.1189
[29]  Gao, H. and Wang, Y. (2019) Stochastic Mutu-alism Model under Regime Switching with Lévy Jumps. Physica A, 515, 355-375.
https://doi.org/10.1016/j.physa.2018.09.189
[30]  Yin, G. and Zhu, C. (2010) Hybrid Switching Diffusions. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4419-1105-6
[31]  Applebaum, D. (2009) Lévy Processes and Stochastics Calculus. 2nd Edition, Cambridge University Press, New York.
https://doi.org/10.1017/CBO9780511809781
[32]  Mao, X. and Yuan, C. (2006) Stochastic Differential Equations with Markovian Switching. Imperial College Press, London.
https://doi.org/10.1142/p473
[33]  Higham, D.J. (2001) An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Review, 43, 525-546.
https://doi.org/10.1137/S0036144500378302

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133