%0 Journal Article %T 一类带Lévy跳的随机混杂互惠系统的渐近性态
Asymptotic Behavior of a Stochastic Hybrid Mutualism System with Lévy Jumps %A 刘丹丹 %A 丁孝全 %J Pure Mathematics %P 605-621 %@ 2160-7605 %D 2020 %I Hans Publishing %R 10.12677/PM.2020.106074 %X

本文讨论一类带Lévy跳和Markov切换的随机互惠系统的渐近性态。利用Lyapunov函数和随机分析工具,建立了系统的随机持久性、灭绝性和平均意义下的持续性。数值模拟验证了理论结果的合理性。
This paper is concerned with the asymptotic behavior of a stochastic mutualism system driven by Lévy jumps under Markovian switching. By using Lyapunov functions and some techniques in sto-chastic calculus, the sufficient conditions for stochastic permanence, extinction, and persistence in mean are established respectively. Finally, some numerical simulations are given to illustrate our theoretical results.

%K 互惠系统,Markov切换,Lévy跳,随机持久,灭绝
Mutualism System %K Markovian Switching %K Lévy Jump %K Stochastic Permanence %K Extinction %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=36274