|
新冠疫情金融和人工智能企业的就业效应——基于断点回归分析
|
Abstract:
新冠疫情对我国经济造成冲击,本研究聚焦当下人工智能技术在新冠疫情中的突出表现,探究新冠疫情冲击对金融业和人工智能产业的就业影响机制。搜集88家人工智能企业与金融企业在2019年12月1日起至2020年3月20日期间发布的招聘数量作为就业数据,以2020年1月21日为疫情断点设计建立断点回归模型,探究新冠疫情下金融业和人工智能行业的就业效应。研究发现:金融行业在疫情爆发期间存在显著就业下跌断点,人工智能行业就业并不存在显著性断点,因此,人工智能行业相比金融传统行业在疫情下对就业有更好的稳定作用。
This paper focuses on the outstanding performance of artificial intelligence technology in the new crown epidemic, and explores the employment impact mechanism of financial industry and artifi-cial intelligence industry under the impact of the new crown epidemic. It collected the number of recruitment which issued by 88 AI enterprises and financial enterprises from December 1, 2019 to March 20, 2020 as employment data. The regression discontinuity model was designed and estab-lished with January 21, 2020 as the discontinuity of the epidemic to explore the employment effects of the new epidemic on the financial industry and AI industry. The results show that there is a significant employment decline discontinuity in the financial industry and no significant discon-tinuity in the employment of the artificial intelligence industry during the COVID-19 epidemic. Therefore, compared with the traditional financial industry, the artificial intelligence industry has a better stabilizing effect on employment in the COVID-19 epidemic.
[1] | 张毅. 疫情冲击下失业率上升统筹政策实施将带动就业形势改善[N]. 中国信息报, 2020-03-17(002). |
[2] | 沈国兵. “新冠肺炎”疫情对我国外贸和就业的冲击及纾困举措[J]. 上海对外经贸大学学报, 2020, 27(2): 16-25. |
[3] | Arash, S.-N., Martin, M. and Buckeridge, D.L. (2018) Health Intelligence: How Artificial Intelligence Transforms Population and Personalized Health. NPJ Digital Medicine, 1. https://doi.org/10.1038/s41746-018-0058-9 |
[4] | 王宁. 人工智能赋能, 助力战“疫”科学化精准化[J]. 中国设备工程, 2020(4): 6-8. |
[5] | 费晓蕾. 三大产业: 筑起“抗疫”防线[J]. 华东科技, 2020(3): 28-33. |
[6] | 管浩. 抗疫的AI[J]. 华东科技, 2020(3): 54-56. |
[7] | 王君, 杨威. 人工智能等技术对就业影响的历史分析和前沿进展[J]. 经济研究参考, 2017(27): 11-25. |
[8] | 高奇琦, 张结斌. 社会补偿与个人适应: 人工智能时代失业问题的两种解决[J]. 江西社会科学, 2017, 37(10): 25-34. |
[9] | 云箴. 人工智能、“机器换人”如何冲击就业[N]. 人民邮电, 2017-10-16(005). |
[10] | Acemoglu, D. and Restrepo, P. (2018) Artificial Intelligence, Automation and Work. NBER Working Paper.
https://doi.org/10.3386/w24196 |
[11] | Frey, C.B. and Osborne, M.A. (2017) The Future of Employment: How Susceptible Are Jobs to Computerisation? Technological Forecasting & Social Change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019 |
[12] | Arntz, M., Gregory, T. and Zierahn, U. (2016) The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis. OECD Social, Employment and Migration Working Papers. |
[13] | Lee, D.S. and Card, D. (2008) Regression Discontinuity Inference with Specification Error. Journal of Econometrics, 142, 655-674. https://doi.org/10.1016/j.jeconom.2007.05.003 |
[14] | Imbens, G.W. and Lemieux, T. (2008) Regression Discontinuity Designs: A Guide to Practice. Journal of Econometrics, 142, 615-635. https://doi.org/10.1016/j.jeconom.2007.05.001 |
[15] | Guido, I. and Karthik, K. (2012) Optimal Bandwidth Choice for the Regression Discontinuity Estimator. The Review of Economic Studies, 79, 933-959. https://doi.org/10.1093/restud/rdr043 |