全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SDF-1/CXCR4/CXCR7共同参与脑卒中后神经功能的再生修复
SDF-1/CXCR4/CXCR7 Are Jointly Involved in the Regeneration and Repair of Nerve Function after Stroke

DOI: 10.12677/ACM.2020.107205, PP. 1360-1366

Keywords: 基质细胞衍生因子-1,CXCR4,CXCR7,脑卒中
SDF-1
, CXCR4, CXCR7, Stroke

Full-Text   Cite this paper   Add to My Lib

Abstract:

神经再生与血管新生是脑卒中后机体自我修复机制的重要表现形式,此过程依赖SDF-1的介导。SDF-1是一种具有趋化特性的细胞信号因子,广泛的存在于免疫和中枢神经系统中,可与其受体CXCR4、CXCR7构成两条不同的信号通路共同参与脑缺血后神经再生修复这一过程。在这篇综述中我们总结了关于SDF-1/CXCR4/CXCR7在脑卒中后神经功能恢复中的相关研究进展。
Neurogenesis and angiogenesis are important manifestations of the body’s self-repair mechanism after stroke, which is mediated by SDF-1. SDF-1 is a chemokine cell signaling factor, widely existing in the immune system and central nervous system. It can form two different signaling pathways with its receptors CXCR4 and CXCR7 to participate in the process of nerve regeneration and repair after cerebral ischemia. In this review, we summarized the progress of studies on SDF-1/ CXCR4/CXCR7 in neurological function recovery after stroke.

References

[1]  Liang, A.C., Mandeville, E.T., Maki, T., et al. (2016) Effects of Aging on Neural Stem/Progenitor Cells and Oligodendrocyte Precursor Cells after Focal Cerebral Ischemia in Spontaneously Hypertensive Rats. Cell Transplantation, 25, 705-714.
https://doi.org/10.3727/096368916X690557
[2]  Wang, L., Guo, S., Zhang, N., et al. (2015) The Role of SDF-1/CXCR4 in the Vasculogenesis and Remodeling of Cerebral Arteriovenous Malformation. Therapeutics and Clinical Risk Management, 11, 1337-1344.
https://doi.org/10.2147/TCRM.S87590
[3]  Cheng, X., Wang, H., Zhang, X., et al. (2017) The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia. Frontiers in Neuroscience, 11, 590.
https://doi.org/10.3389/fnins.2017.00590
[4]  Murphy, P.M., Baggiolini, M., Charo, I.F., et al. (2000) International Union of Pharmacology. XXII. Nomenclature for Chemokine Receptors. Pharmacological Reviews, 52, 145-176.
[5]  Balabanian, K., Lagane, B., Infantino, S., et al. (2005) The Chemokine SDF-1/CXCL12 Binds to and Signals through the Orphan Receptor RDC1 in T Lymphocytes. The Journal of Biological Chemistry, 280, 35760-35766.
https://doi.org/10.1074/jbc.M508234200
[6]  Rath, D., Chatterjee, M., Meyer, L., et al. (2018) Relative Survival Potential of Platelets Is Associated with Platelet CXCR4/CXCR7 Surface Exposure and Functional Recovery Following STEMI. Atherosclerosis, 278, 269-277.
https://doi.org/10.1016/j.atherosclerosis.2018.10.008
[7]  Berger, O., Li, G., Han, S.M., et al. (2007) Expression of SDF-1 and CXCR4 during Reorganization of the Postnatal Dentate Gyrus. Developmental Neuroscience, 29, 48-58.
https://doi.org/10.1159/000096210
[8]  Cui, L., Qu, H., Xiao, T., et al. (2013) Stromal Cell-Derived Factor-1 and Its Receptor CXCR4 in Adult Neurogenesis after Cerebral Ischemia. Restorative Neurology and Neuroscience, 31, 239-251.
https://doi.org/10.3233/RNN-120271
[9]  Chu, T., Shields, L., Zhang, Y.P., et al. (2017) CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist, 23, 627-648.
https://doi.org/10.1177/1073858416685690
[10]  Schonemeier, B., Kolodziej, A., Schulz, S., et al. (2008) Regional and Cellular Localization of the CXCl12/SDF-1 Chemokine Receptor CXCR7 in the Developing and Adult Rat Brain. The Journal of Comparative Neurology, 510, 207-220.
https://doi.org/10.1002/cne.21780
[11]  Thelen, M. and Thelen, S. (2008) CXCR7, CXCR4 and CXCL12: An Eccentric Trio? Journal of Neuroimmunology, 198, 9-13.
https://doi.org/10.1016/j.jneuroim.2008.04.020
[12]  Williams, J.L., Holman, D.W. and Klein, R.S. (2014) Chemokines in the Balance: Maintenance of Homeostasis and Protection at CNS Barriers. Frontiers in Cellular Neuroscience, 8, 154.
https://doi.org/10.3389/fncel.2014.00154
[13]  Mousavi, A. (2020) CXCL12/CXCR4 Signal Transduction in Diseases and Its Molecular Approaches in Targeted- Therapy. Immunology Letters, 217, 91-115.
https://doi.org/10.1016/j.imlet.2019.11.007
[14]  Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., et al. (2004) Progenitor Cell Trafficking Is Regulated by Hypoxic Gradients through HIF-1 Induction of SDF-1. Nature Medicine, 10, 858-864.
https://doi.org/10.1038/nm1075
[15]  Wang, Y., Li, G., Stanco, A., et al. (2011) CXCR4 and CXCR7 Have Distinct Functions in Regulating Interneuron Migration. Neuron, 69, 61-76.
https://doi.org/10.1016/j.neuron.2010.12.005
[16]  Daniel, S.K., Seo, Y.D. and Pillarisetty, V.G. (2019) The CXCL12-CXCR4/CXCR7 Axis as a Mechanism of Immune Resistance in Gastrointestinal Malignancies. Seminars in Cancer Biology.
https://doi.org/10.1016/j.semcancer.2019.12.007
[17]  Puchert, M. and Engele, J. (2014) The Peculiarities of the SDF-1/CXCL12 System: In Some Cells, CXCR4 and CXCR7 Sing Solos, in Others, They Sing Duets. Cell and Tissue Research, 355, 239-253.
https://doi.org/10.1007/s00441-013-1747-y
[18]  Adlere, I., Caspar, B., Arimont, M., et al. (2019) Modulators of CXCR4 and CXCR7/ACKR3 Function. Molecular Pharmacology, 96, 737-752.
https://doi.org/10.1124/mol.119.117663
[19]  Pujol, F., Kitabgi, P. and Boudin, H. (2005) The Chemokine SDF-1 Differentially Regulates Axonal Elongation and Branching in Hippocampal Neurons. Journal of Cell Science, 118, 1071-1080.
https://doi.org/10.1242/jcs.01694
[20]  Ohshima, Y., Kubo, T., Koyama, R., et al. (2008) Regulation of Axonal Elongation and Pathfinding from the Entorhinal Cortex to the Dentate Gyrus in the Hippocampus by the Chemokine Stromal Cell-Derived Factor 1 Alpha. Journal of Neuroscience, 28, 8344-8353.
https://doi.org/10.1523/JNEUROSCI.1670-08.2008
[21]  Dziembowska, M., Tham, T.N., Lau, P., et al. (2005) A Role for CXCR4 Signaling in Survival and Migration of Neural and Oligodendrocyte Precursors. Glia, 50, 258-269.
https://doi.org/10.1002/glia.20170
[22]  Zhu, C., Yao, W.L., Tan, W., et al. (2017) SDF-1 and CXCR4 Play an Important Role in Adult SVZ Lineage Cell Proliferation and Differentiation. Brain Research, 1657, 223-231.
https://doi.org/10.1016/j.brainres.2016.06.011
[23]  Krathwohl, M.D. and Kaiser, J.L. (2004) Chemokines Promote Quiescence and Survival of Human Neural Progenitor Cells. Stem Cells, 22, 109-118.
https://doi.org/10.1634/stemcells.22-1-109
[24]  Peng, H., Kolb, R., Kennedy, J.E., et al. (2007) Differential Expression of CXCL12 and CXCR4 during Human Fetal Neural Progenitor Cell Differentiation. Journal of Neuroimmune Pharmacology, 2, 251-258.
https://doi.org/10.1007/s11481-007-9081-3
[25]  Lounsbury, N. (2020) Advances in CXCR7 Modulators. Pharmaceuticals (Basel), 13, 33.
https://doi.org/10.3390/ph13020033
[26]  Wang, C., Chen, W. and Shen, J. (2018) CXCR7 Targeting and Its Major Disease Relevance. Frontiers in Pharmacology, 9, 641.
https://doi.org/10.3389/fphar.2018.00641
[27]  Zhu, Y. and Murakami, F. (2012) Chemokine CXCL12 and Its Receptors in the Developing Central Nervous System: Emerging Themes and Future Perspectives. Developmental Neurobiology, 72, 1349-1362.
https://doi.org/10.1002/dneu.22041
[28]  Liu, S., Jia, X., Li, C., et al. (2013) CXCR7 Silencing Attenuates Cell Adaptive Response to Stromal Cell Derived Factor 1 Alpha after Hypoxia. PLoS ONE, 8, e55290.
https://doi.org/10.1371/journal.pone.0055290
[29]  Sanchez-Alcaniz, J.A., Haege, S., Mueller, W., et al. (2011) CXCR7 Controls Neuronal Migration by Regulating Chemokine Responsiveness. Neuron, 69, 77-90.
https://doi.org/10.1016/j.neuron.2010.12.006
[30]  Rajagopal, S., Kim, J., Ahn, S., et al. (2010) Beta-Arrestin But Not G Protein-Mediated Signaling by the “Decoy” Receptor CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 107, 628-632.
https://doi.org/10.1073/pnas.0912852107
[31]  Uto-Konomi, A., Mckibben, B., Wirtz, J., et al. (2013) CXCR7 Agonists Inhibit the Function of CXCL12 by Down- Regulation of CXCR4. Biochemical and Biophysical Research Communications, 431, 772-776.
https://doi.org/10.1016/j.bbrc.2013.01.032
[32]  Chen, Q., Zhang, M., Li, Y., et al. (2015) CXCR7 Mediates Neural Progenitor Cells Migration to CXCL12 Independent of CXCR4. Stem Cells, 33, 2574-2585.
https://doi.org/10.1002/stem.2022
[33]  Wei, S.T., Huang, Y.C., Hsieh, M.L., et al. (2020) Atypical Chemokine Receptor ACKR3/CXCR7 Controls Postnatal Vasculogenesis and Arterial Specification by Mesenchymal Stem Cells via Notch Signaling. Cell Death and Disease, 11, 307.
https://doi.org/10.1038/s41419-020-2512-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133