|
肝炎病毒对NF-κB信号通路的调控作用
|
Abstract:
[1] | Eller, C., et al. (2018) The Functional Role of Sodium Taurocholate Cotransporting Polypeptide NTCP in the Life Cycle of Hepatitis B, C and D Viruses. Cellular and Molecular Life Sciences, 75, 3895-3905.
https://doi.org/10.1007/s00018-018-2892-y |
[2] | Kamar, N., et al. (2012) Hepatitis E. The Lancet, 379, 2477-2488. https://doi.org/10.1016/S0140-6736(11)61849-7 |
[3] | El-Serag, H.B. (2012) Epidemiology of Viral Hepatitis and Hepatocellular Carcinoma. Gastroenterology, 142, 1264-1273e1.
https://doi.org/10.1053/j.gastro.2011.12.061 |
[4] | Kang, S. and Myoung, J. (2017) Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms. Journal of Microbiology and Biotechnology, 27, 1727-1735. https://doi.org/10.4014/jmb.1708.08045 |
[5] | Chan, S.T. and Ou, J.J. (2017) Hepatitis C Virus-Induced Autophagy and Host Innate Immune Response. Viruses, 9, 224. https://doi.org/10.3390/v9080224 |
[6] | Jensen, S. and Thomsen, A.R. (2012) Sensing of RNA Viruses: A Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion. Journal of Virology, 86, 2900-2910. https://doi.org/10.1128/JVI.05738-11 |
[7] | Scott, O. and Roifman, C.M. (2019) NF-κB Pathway and the Goldilocks Principle: Lessons from Human Disorders of Immunity and Inflammation. Journal of Allergy and Clinical Immunology, 143, 1688-1701.
https://doi.org/10.1016/j.jaci.2019.03.016 |
[8] | Viatour, P., Merville, M.-P., Bours, V. and Chariot, A. (2005) Phosphorylation of NF-κB and IκB Proteins: Implications in Cancer and Inflammation. Trends in Biochemical Sciences, 30, 43-52.
https://doi.org/10.1016/j.tibs.2004.11.009 |
[9] | Fortin, J.-F., Barat, C., Beausejour, Y., Barbeau, B. and Tremblay, M.J. (2004) Hyper-Responsiveness to Stimulation of Human Immunodeficiency Virus-Infected CD4+ T Cells Requires Nef and Tat Virus Gene Products and Results from Higher NFAT, NF-κB, and AP-1 Induction. Journal of Biological Chemistry, 279, 39520-39531.
https://doi.org/10.1074/jbc.M407477200 |
[10] | Oie, K.L. and Pickup, D.J. (2001) Cowpox Virus and Other Mem-bers of the Orthopoxvirus Genus Interfere with the Regulation of NF-κB Activation. Virology, 288, 175-187. https://doi.org/10.1006/viro.2001.1090 |
[11] | Yu, Z., et al. (2016) Effects of T Cell Immunoglobulin and Mucin Domain-Containing Molecule-3 Signaling Molecule on Human Monocyte-Derived Dendritic Cells with Hepatitis B Virus Surface Antigen Stimulation in Vitro. Molecular Medicine Reports, 13, 2785-2790. https://doi.org/10.3892/mmr.2016.4815 |
[12] | Zhang, S., Wang, F. and Zhang, Z. (2017) Current Advances in the Elimination of Hepatitis B in China by 2030. Frontiers in Medicine, 11, 490-501. https://doi.org/10.1007/s11684-017-0598-4 |
[13] | Tong, S., Li, J., Wands, J.R. and Wen, Y.-M. (2013) Hepatitis B Virus Genetic Variants: Biological Properties and Clinical Implications. Emerging Microbes & Infections, 2, e10. https://doi.org/10.1038/emi.2013.10 |
[14] | Liu, D., et al. (2014) Hepatitis B Virus Polymerase Suppresses NF-κB Signaling by Inhibiting the Activity of IKKs via Interaction with Hsp90beta. PLoS ONE, 9, e91658. https://doi.org/10.1371/journal.pone.0091658 |
[15] | Xiang, W.Q., Feng, W.-F., Zhen, W.K., Zhi, S. and Liu, C.W. (2011) Hepatitis B Virus X Protein Stimulates IL-6 Expression in Hepatocytes via a MyD88-Dependent Pathway. Journal of Hepatology, 54, 26-33.
https://doi.org/10.1016/j.jhep.2010.08.006 |
[16] | Hosel, M., et al. (2009) Not Interferon, But Interleukin-6 Controls Early Gene Expression in Hepatitis B Virus Infection. Hepatology, 50, 1773-1782. https://doi.org/10.1002/hep.23226 |
[17] | Chen, Z., et al. (2017) Hepatitis B Virus Core Antigen Stimulates IL-6 Expression via p38, ERK and NF-κB Pathways in Hepatocytes. Cellular Physiology and Biochemistry, 41, 91-100. https://doi.org/10.1159/000455954 |
[18] | Liu, C., et al. (2017) HBV X Protein Induces Overexpression of HERV-W env through NF-κB in HepG2 Cells. Virus Genes, 53, 797-806. https://doi.org/10.1007/s11262-017-1479-2 |
[19] | Shi, J., et al. (2017) Current Progress in Host Innate and Adaptive Immunity against Hepatitis C Virus Infection. Hepatology International, 11, 374-383. https://doi.org/10.1007/s12072-017-9805-2 |
[20] | 唐立红, 等. 丙型肝炎流行病学及临床检验技术研究进展[J]. 实验与检验医学, 2019, 37(4): 553-556. |
[21] | Warkad, S.D., et al. (2018) Performance of 6 HCV Genotyping 9G Test for HCV Genotyping in Clinical Samples. Virology Journal, 15, 107. https://doi.org/10.1186/s12985-018-1017-4 |
[22] | Xie, Z., Xiao, Z. and Wang, F. (2017) Hepatitis C Virus Non-structural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway. Mole-cules and Cells, 40, 202-210. |
[23] | Ray, R.B., et al. (2002) Distinct Functional Role of Hepatitis C Virus Core Protein on NF-κB Regulation Is Linked to Genomic Variation. Virus Research, 87, 21-29. https://doi.org/10.1016/S0168-1702(02)00046-1 |
[24] | Joo, M., et al. (2005) Hepatitis C Virus Core Protein Sup-presses NF-κB Activation and Cyclooxygenase-2 Expression by Direct Interaction with IκB Kinase Beta. Journal of Virology, 79, 7648-7657.
https://doi.org/10.1128/JVI.79.12.7648-7657.2005 |
[25] | Li, X.D., et al. (2005) Hepatitis C Virus Protease NS3/4A Cleaves Mitochondrial Antiviral Signaling Protein off the Mitochondria to Evade Innate Immunity. Proceedings of the National Academy of Sciences of the United States of America, 102, 17717-17722. https://doi.org/10.1073/pnas.0508531102 |
[26] | Majumder, M., et al. (2002) Hepatitis C Virus NS5A Protein Im-pairs TNF-Mediated Hepatic Apoptosis, But Not by an Anti-FAS Antibody, in Transgenic Mice. Virology, 294, 94-105. https://doi.org/10.1006/viro.2001.1309 |
[27] | Park, J., et al. (2012) Hepatitis C Virus Infection Enhances TNFalpha-Induced Cell Death via Suppression of NF-κB. Hepatology, 56, 831-840. https://doi.org/10.1002/hep.25726 |
[28] | Huang, I.C., Chien, C.-Y., Huang, C.-R. and Lo, S.J. (2006) Induction of Hepatitis D Virus Large Antigen Translocation to the Cytoplasm by Hepatitis B Virus Surface Antigens Correlates with Endoplasmic Reticulum Stress and NF-κB Activation. Journal of General Virology, 87, 1715-1723. https://doi.org/10.1099/vir.0.81718-0 |
[29] | Botelho-Souza, L.F., et al. (2017) Hepatitis Delta: Virological and Clinical Aspects. Virology Journal, 14, 177.
https://doi.org/10.1186/s12985-017-0845-y |
[30] | Williams, V., et al. (2012) Large Hepatitis Delta Antigen Activates STAT-3 and NF-κB via Oxidative Stress. Journal of Viral Hepatitis, 19, 744-753. https://doi.org/10.1111/j.1365-2893.2012.01597.x |
[31] | CY, P., et al. (2009) Hepatitis Delta Virus Large Antigen Sensitizes to TNF-Alpha-Induced NF-κB Signaling. Molecules and Cells, 28, 49-55. https://doi.org/10.1007/s10059-009-0100-5 |
[32] | Rein, D.B., et al. (2012) The Global Burden of Hepatitis E Virus Genotypes 1 and 2 in 2005. Hepatology, 55, 988-997.
https://doi.org/10.1002/hep.25505 |
[33] | Nassim, K., et al. (2011) Factors Associated with Chronic Hepatitis in Pa-tients with Hepatitis E Virus Infection Who Have Received Solid Organ Transplants. Gastroenterology, 140, 1481-1489.
https://doi.org/10.1053/j.gastro.2011.02.050 |
[34] | Lu, L., Li, C. and Hagedorn, C.H. (2006) Phylogenetic Analysis of Global Hepatitis E Virus Sequences: Genetic Diversity, Subtypes and Zoonosis. Reviews in Medical Virology, 16, 5-36. https://doi.org/10.1002/rmv.482 |
[35] | Todt, D., et al. (2016) In Vivo Evidence for Ribavirin-Induced Muta-genesis of the Hepatitis E Virus Genome. Gut, 65, 1733-1743. https://doi.org/10.1136/gutjnl-2015-311000 |
[36] | Xu, L., et al. (2017) Noncanonical Antiviral Mechanisms of ISGs: Dispensability of Inducible Interferons. Trends in Immunology, 38, 1-2. https://doi.org/10.1016/j.it.2016.11.002 |
[37] | Devhare, P.B., et al. (2013) Analysis of Antiviral Response in Human Epithelial Cells Infected with Hepatitis E Virus. PLoS ONE, 8, e63793. https://doi.org/10.1371/journal.pone.0063793 |
[38] | Xu, J., et al. (2014) Open Reading Frame 3 of Genotype 1 Hepatitis E Virus Inhibits Nuclear Factor-Kappaappa B Signaling Induced by Tumor Necrosis Factor-Alpha in Human A549 Lung Epithelial Cells. PLoS ONE, 9, e100787.
https://doi.org/10.1371/journal.pone.0100787 |
[39] | He, M., et al. (2016) The ORF3 Protein of Genotype 1 Hepatitis E Virus Suppresses TLR3-Induced NF-κB Signaling via TRADD and RIP1. Scientific Reports, 6, Article No. 27597. https://doi.org/10.1038/srep27597 |
[40] | Surjit, M., Varshney, B. and Lal, S.K. (2012) The ORF2 Glycoprotein of Hepatitis E Virus Inhibits Cellular NF-κB Activity by Blocking Ubiquitination Mediated Proteasomal Degradation of IκBα in Human Hepatoma Cells. BMC Biochemistry, 13, 7. https://doi.org/10.1186/1471-2091-13-7 |
[41] | Michael, K. (2006) Nuclear Factor-κB in Cancer Development and Progression. Nature, 441, 431-436.
https://doi.org/10.1038/nature04870 |
[42] | 毛群颖, 等. 甲型肝炎疫苗的研发和应用[J]. 中国生物制品学杂志, 2017, 30(9): 999-1002. |
[43] | Sun, X.J., et al. (2019) Changes in the Epidemiology of Hepatitis A in Three So-cio-Economic Regions of China, 1990-2017. Infectious Diseases of Poverty, 8, 80. https://doi.org/10.1186/s40249-019-0591-z |