全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类相变模型的弱解存在性的研究
Existence of Weak Solutions for a Class of Phase Field Models

DOI: 10.12677/PM.2020.107080, PP. 666-679

Keywords: 弱解的存在性,序参数,巴拿赫不动点定理
Existence of Weak Solutions
, Order Parameter, Banach’s Fixed Point Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在忽略弹性效应的情况下,研究了一类Neumann边界条件下的序参数不守恒的相场模型。通过引入一个参数κ构造一个修正模型,然后借助巴拿赫不动点定理、Aubin-Lions引理和一系列先验估计,最终得到该模型弱解的整体存在性。
We shall investigate a phase-field model with a non-conserved order parameter which is under Neumann boundary conditions and omitting the effect of elasticity. By introducing a parameter κ to construct a modified model, and then using Banach’s fixed point Theorem, Aubin-Lions lemma and a series of a-priori estimates, the existence of global weak solutions to the model is finally obtained.

References

[1]  Allen, S.M. and Cahn, J.W. (1979) A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening. Acta Materialia, 27, 1085-1095.
https://doi.org/10.1016/0001-6160(79)90196-2
[2]  Liu, C. and Shen, J. (2003) A Phase Field Model for the Mixture of Two Incompressible Fluids and Its Approximation by a Fourier-Spectral Method. Physica D, 179, 211-228.
https://doi.org/10.1016/S0167-2789(03)00030-7
[3]  Coheh, D.S. and Murray, J.D. (1981) A Generalize Diffu-sion Model for Growth and Dispersal in a Population. Journal of Mathematical Biology, 12, 237-249.
https://doi.org/10.1007/BF00276132
[4]  Honjo, M. and Saito, Y. (2000) Numerical Simulation of Phase Separa-tion in FeCr Binary and FeCrMo Ternary Alloys with Use of the CahnHilliard Equation. ISIJ International, 40, 914-919.
https://doi.org/10.2355/isijinternational.40.914
[5]  Alber, H.D. and Zhu, P.C. (2007) Evolution of Phase Boundaries by Configurational Forces. Archive for Rational Mechanics and Analysis, 185, 235-286.
https://doi.org/10.1007/s00205-007-0054-8
[6]  Alber, H.D. and Zhu, P. (2007) Solutions to a Model for Interface Motion by Interface Diffusion. Proceedings of the Royal Society of Edinburgh, 138, 923-955.
https://doi.org/10.1017/S0308210507000170
[7]  Alber, H.D. and Zhu, P. (2011) Interface Motion by Interface Diffusion Driven by Bulk Energy: Justification of a Diffusive Interface Model. Continuum Mechanics & Thermody-namics, 23, 139-176.
https://doi.org/10.1007/s00161-010-0162-9
[8]  Alber, H.D. and Zhu, P. (2011) Solutions to a Model with Neu-mann Boundary Conditions for Phase Transitions Driven by Configurational Forces. Nonlinear Analysis Real World Applications, 12, 1797-1809.
https://doi.org/10.1016/j.nonrwa.2010.11.012
[9]  Kawashima, S. and Zhu, P. (2011) Traveling Waves for Models of Phase Transitions of Solids Driven by Configurational Forces. Discrete and Continuous Dynamical Systems—Series B (DCDS-B), 15, 309-323.
https://doi.org/10.3934/dcdsb.2011.15.309
[10]  Zhu, P. (2012) Regularity of Solutions to a Model for Solid Phase Transitions Driven by Configurational Forces. Journal of Mathematical Analysis & Applications, 389, 1159-1172.
https://doi.org/10.1016/j.jmaa.2011.12.052
[11]  Zhu, P. (2012) Solvability via Viscosity Solutions for a Model of Phase Transitions Driven by Configurational Forces. Journal of Differential Equations, 251, 2833-2852.
https://doi.org/10.1016/j.jde.2011.05.035
[12]  Alber, H.D. and Zhu, P. (2005) Solutions to a Model with Nonuniformly Parabolic Terms for Phase Evolution Driven by Configurational Forces. SIAM Journal on Applied Mathematics, 66, 680-699.
https://doi.org/10.1137/050629951
[13]  Evans, L.C. (1997) Partial Differential Equa-tions and Monge-Kantorovich Mass Transfer. In: Current Developments in Mathematics, Int. Press, Boston, 65-126.
https://doi.org/10.4310/CDM.1997.v1997.n1.a2
[14]  Roubicek, T. (1990) A Generalization of the Lions-Temam Compact Imbedding Theorem. ?asopis pro pěstování matematiky, 115, 338-342.
[15]  Lions, J. (1969) Quelques Methods de Resolution des Problems aux Limites Non Lineaires. Dunod Gauthier-Villars, Pairs.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133