%0 Journal Article %T 一类相变模型的弱解存在性的研究
Existence of Weak Solutions for a Class of Phase Field Models %A 陈梅 %J Pure Mathematics %P 666-679 %@ 2160-7605 %D 2020 %I Hans Publishing %R 10.12677/PM.2020.107080 %X

本文在忽略弹性效应的情况下,研究了一类Neumann边界条件下的序参数不守恒的相场模型。通过引入一个参数κ构造一个修正模型,然后借助巴拿赫不动点定理、Aubin-Lions引理和一系列先验估计,最终得到该模型弱解的整体存在性。
We shall investigate a phase-field model with a non-conserved order parameter which is under Neumann boundary conditions and omitting the effect of elasticity. By introducing a parameter κ to construct a modified model, and then using Banach’s fixed point Theorem, Aubin-Lions lemma and a series of a-priori estimates, the existence of global weak solutions to the model is finally obtained.

%K 弱解的存在性,序参数,巴拿赫不动点定理
Existence of Weak Solutions %K Order Parameter %K Banach’s Fixed Point Theorem %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=36785