%0 Journal Article
%T 一类相变模型的弱解存在性的研究
Existence of Weak Solutions for a Class of Phase Field Models
%A 陈梅
%J Pure Mathematics
%P 666-679
%@ 2160-7605
%D 2020
%I Hans Publishing
%R 10.12677/PM.2020.107080
%X
本文在忽略弹性效应的情况下,研究了一类Neumann边界条件下的序参数不守恒的相场模型。通过引入一个参数κ构造一个修正模型,然后借助巴拿赫不动点定理、Aubin-Lions引理和一系列先验估计,最终得到该模型弱解的整体存在性。
We shall investigate a phase-field model with a non-conserved order parameter which is under Neumann boundary conditions and omitting the effect of elasticity. By introducing a parameter κ to construct a modified model, and then using Banach’s fixed point Theorem, Aubin-Lions lemma and a series of a-priori estimates, the existence of global weak solutions to the model is finally obtained.