全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

In situ thermal

DOI: 10.1177/0734904118794955

Keywords: Passive fire protection,char layer,porosity,computed tomography,heat-blocking efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thermal insulating performance and char-layer properties have been studied for water-based intumescent coatings for structural steel fire protection using a new laboratory-scale mass-loss cone apparatus. A specimen (100 × 100 mm mild steel plate; the initial coating thickness: 0.3–2.0?mm) is placed horizontally and exposed to a constant incident radiant heat flux (25, 50, or 75?kW/m2). The apparent thermal conductivity of the expanding char layer is determined in situ based on real-time measurements of the temperature distribution in the char layer and the heat flux transmitted through the char layer. Three-dimensional morphological observations of the expanded char layer are made using a computed tomographic–based analytical method. The vertical variation of the porosity of the expanded char layer is measured. The measured heat-blocking efficiency is correlated strongly with the incident heat flux, which increases the expanded char-layer thickness, and porosity for sufficiently large initial coating thicknesses (>0.76?mm). For a thin coating (0.30?mm), violent off-gassing disrupts the intumescing processes to form a consistent char layer after abrupt exposure to higher incident heat fluxes, thus resulting in lower heat-blocking efficiency. Therefore, the product application thickness must exceed a proper threshold value to ensure an adequate thermal insulation performance

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133