We consider opportunistic access to spectrum resources in cognitive wireless networks. The users equipment, or the network nodes in general are able to sense the spectrum and adopt a subset of available resources (the spectrum and the power) individually and independently in a distributed manner, that is, based on their local channel quality information and not knowing the Channel State Information (CSI) of the other nodes' links in the considered network area. In such a network scenery, the competition of nodes for available resources is observed, which can be modeled as a game. To obtain spectrally efficient and fair spectrum allocation in this competitive environment with the nodes having no information on the other players, taxation of resources is applied to coerce desired behavior of the competitors. In the paper, we present mathematical formulation of the problem of finding the optimal taxation rate (common for all nodes) and propose a reduced-complexity algorithm for this optimization. Simulation results for these derived optimal values in various scenarios are also provided. 1. Introduction Opportunistic spectrum access and flexible and efficient spectrum allocation procedures as well are considered as measures to increase the utilization of the scarce radio resources in future wireless communication networks. Apart from the spectral efficiency, the Quality of Experience (QoE), and the associated fairness in resources distribution are in the focus of research towards the cognitive, opportunistic, and dynamic spectrum access. The spectrum allocation procedures are usually centralized, require the Channel State Information (CSI) of all links in the network, and involve the overhead traffic, which in turn occupies the scarce radio resources. For the future communication concepts, such as cognitive or opportunistic radio, the nodes are expected to take intelligent decisions on the amount of resources to be utilized in a distributed way, thus minimizing or eliminating the overhead traffic. In this paper, we consider opportunistic acquisition of orthogonal frequency channels by the network nodes. An example of the multiple-access technique using such orthogonal channels is the well-known Orthogonal Frequency Division Multiple Access (OFDMA). In the opportunistic OFDMA, the network nodes are able to adopt a subset of accessible subcarriers (SCs) individually, as well as the transmission rate and power allocated to these SCs [1]. Below, we consider a more general scenario of the opportunistic access to frequency channels of any bandwidth, limited
References
[1]
Z. Zhang, Y. He, and E. K. P. Chong, “Opportunistic scheduling for OFDM systems with fairness constraints,” Eurasip Journal on Wireless Communications and Networking, vol. 2008, Article ID 215939, 2008.
[2]
Z. Han, Z. Ji, and K. J. R. Liu, “Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions,” IEEE Transactions on Communications, vol. 53, no. 8, pp. 1366–1376, 2005.
[3]
C. Sacchi, F. Granelli, and C. Schlegel, “A QoE-oriented strategy for OFDMA radio resource allocation based on min-MOS maximization,” IEEE Communications Letters, vol. 15, no. 5, pp. 494–496, 2011.
[4]
J. Chen and A. L. Swindlehurst, “Applying bargaining solutions to resource allocation in multiuser MIMO-OFDMA broadcast systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 2, pp. 127–139, 2012.
[5]
Z. Han, Z. Ji, and K. J. R. Liu, “Non-cooperative resource competition game by virtual referee in multi-cell OFDMA networks,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 6, pp. 1079–1090, 2007.
[6]
S. Buzzi, G. Colavolpe, D. Saturnino, and A. Zappone, “Potential games for energy-efficient power control and subcarrier allocation in uplink multicell OFDMA systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 2, pp. 89–103, 2012.
[7]
D. Wu, D. Yu, and Y. Cai, “Subcarrier and power allocation in uplink OFDMA systems based on game theory,” in Proceedings of the IEEE International Conference Neural Networks and Signal Processing (ICNNSP '08), pp. 522–526, June 2008.
[8]
D. Yu, D. Wu, Y. Cai, and W. Zhong, “Power allocation based on power efficiency in uplink OFDMA systems: a game theoretic approach,” in Proceedings of the 11th IEEE Singapore International Conference on Communication Systems (ICCS '08), pp. 92–97, November 2008.
[9]
F. Chen, L. Xu, S. Mei, T. Zhenhui, and L. Huan, “OFDM bit and power allocation based on game theory,” in Proceedings of the IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE '07), pp. 1147–1150, August 2007.
[10]
H. Yu, L. Gao, Z. Li, X. Wang, and E. Hossain, “Pricing for uplink power control in cognitive radio networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 1769–1778, 2010.
[11]
H. Kwon and B. G. Lee, “Distributed resource allocation through noncooperative game approach in multi-cell OFDMA systems,” in Proceedings of the IEEE International Conference on Communications (ICC '06), pp. 4345–4350, July 2006.
[12]
L. Wang, Y. Xue, and E. Schulz, “Resource allocation in multicell OFDM systems based on noncooperative game,” in Proceedings of the IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '06), pp. 1–5, September 2006.
[13]
Z. Liang, Y. H. Chew, and C. C. Ko, “Decentralized bit, subcarrier and power allocation with interference avoidance in multicell OFDMA systems using game theoretic approach,” in Proceedings of the IEEE Military Communications Conference (MILCOM '08), pp. 1–7, November 2008.
[14]
F. Wang, M. Krunz, and S. Cui, “Price-based spectrum management in cognitive radio networks,” IEEE Journal on Selected Topics in Signal Processing, vol. 2, no. 1, pp. 74–87, 2008.
[15]
S. K. Jayaweera, G. Vazquez-Vilar, and C. Mosquera, “Dynamic spectrum leasing: a new paradigm for spectrum sharing in cognitive radio networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 5, pp. 2328–2339, 2010.
[16]
D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of nash equilibrium, and collusion,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 192–202, 2008.
[17]
H. Bogucka, “Efficient and rational spectrum utilization in opportunistic OFDMA networks with imperfect CSI: a utility-based top-down approach,” Wireless Communications and Mobile Computing, vol. 12, no. 5, pp. 431–444, 2012.
[18]
G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859, pp. 1243–1248, 1968.
[19]
J. Perez-Romero, O. Sallent, R. Agusti, and L. Giupponi, “A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation,” in Proceedings of the 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN '07), pp. 46–54, Dublin, Ireland, April 2007.
[20]
G. J. Foschini and J. Salz, “Digital communications over fading radio channels,” The Bell System Technical Journal, vol. 62, no. 2, pp. 429–456, 1983.
[21]
S. M. Perlaza, M. Debbah, S. Lasaulce, and H. Bogucka, “On the benefits of bandwidth limiting in decentralized vector multiple access channels,” in Proceedings of the 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM '09), Hannover, Germany, June 2009.
[22]
P. Straffin, Game Theory and Strategy, The Mathematical Association of America, 2002.