%0 Journal Article %T Optimal Pricing of Spectrum Resources in Wireless Opportunistic Access %A Hanna Bogucka %J Journal of Computer Networks and Communications %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/794572 %X We consider opportunistic access to spectrum resources in cognitive wireless networks. The users equipment, or the network nodes in general are able to sense the spectrum and adopt a subset of available resources (the spectrum and the power) individually and independently in a distributed manner, that is, based on their local channel quality information and not knowing the Channel State Information (CSI) of the other nodes' links in the considered network area. In such a network scenery, the competition of nodes for available resources is observed, which can be modeled as a game. To obtain spectrally efficient and fair spectrum allocation in this competitive environment with the nodes having no information on the other players, taxation of resources is applied to coerce desired behavior of the competitors. In the paper, we present mathematical formulation of the problem of finding the optimal taxation rate (common for all nodes) and propose a reduced-complexity algorithm for this optimization. Simulation results for these derived optimal values in various scenarios are also provided. 1. Introduction Opportunistic spectrum access and flexible and efficient spectrum allocation procedures as well are considered as measures to increase the utilization of the scarce radio resources in future wireless communication networks. Apart from the spectral efficiency, the Quality of Experience (QoE), and the associated fairness in resources distribution are in the focus of research towards the cognitive, opportunistic, and dynamic spectrum access. The spectrum allocation procedures are usually centralized, require the Channel State Information (CSI) of all links in the network, and involve the overhead traffic, which in turn occupies the scarce radio resources. For the future communication concepts, such as cognitive or opportunistic radio, the nodes are expected to take intelligent decisions on the amount of resources to be utilized in a distributed way, thus minimizing or eliminating the overhead traffic. In this paper, we consider opportunistic acquisition of orthogonal frequency channels by the network nodes. An example of the multiple-access technique using such orthogonal channels is the well-known Orthogonal Frequency Division Multiple Access (OFDMA). In the opportunistic OFDMA, the network nodes are able to adopt a subset of accessible subcarriers (SCs) individually, as well as the transmission rate and power allocated to these SCs [1]. Below, we consider a more general scenario of the opportunistic access to frequency channels of any bandwidth, limited %U http://www.hindawi.com/journals/jcnc/2012/794572/