全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

DOI: 10.1155/2012/389247

Full-Text   Cite this paper   Add to My Lib

Abstract:

When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensislarvicide (Bt) and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard) and Raphanus sativus (wild radish). These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands. 1. Introduction Commercialized transgenic, insect resistant (IR) crops currently grown in the United States have virtually no wild relatives near production sites, thus ensuring that novel crop traits are unlikely to move into local wild gene pools. However, an assessment of the consequences of gene flow will be necessary in future deregulation decisions because most of the major and minor crops in the world either exist in the wild themselves or hybridize with wild relatives somewhere in their range [1–5]. Wild relatives of transformed plants that obtain IR traits through gene flow and introgression may be released from the pressure exerted by susceptible herbivores [6–14]. However, scant knowledge about the ecological factors that regulate the abundance, competitive ability, or geographic range of weeds limits our ability to predict whether novel plant defenses are likely to increase the weediness of wild crop relatives [14] or even whether herbivory has a negative or positive effect on plant growth and fitness [15–20]. Surprisingly, few tests have been conducted on the effects of herbivory on the spread of invasive plants [21, 22] or to quantify the effects of herbivory on plant vital rates [23]. Identifying and quantifying environmental risks associated with gene flow from transgenic crops is subject to methodological tradeoffs because of containment restrictions, especially for plant fitness effects, which require pollen production. Field tests with pollen-producing transgenic plants must be contained physically in cages or greenhouses or established at sites where wild relatives do

References

[1]  T. Klinger, “Variability and uncertainty in crop-to-wild hybridization,” in Genetically Engineered Organisms: Assessing Environmental and Human Health Effects, D. K. Letourneau and B. E. Burrows, Eds., CRC Press, Boca Raton, Fla, USA, 2002.
[2]  A. A. Snow and P. M. Palma, “Commercialization of transgenic plants: potential ecological risks,” BioScience, vol. 47, no. 2, pp. 86–96, 1997.
[3]  A. A. Snow and P. M. Palma, “Commercialization of transgenic plants: potential ecological risks,” BioScience, vol. 47, no. 4, p. 206, 1997.
[4]  N. C. Ellstrand, “Current knowledge of gene flow in plants: implications for transgene flow,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1434, pp. 1163–1170, 2003.
[5]  N. C. Ellstrand, H. C. Prentice, and J. F. Hancock, “Gene flow and introgression from domesticated plants into their wild relatives,” Annual Review of Ecology and Systematics, vol. 30, pp. 539–563, 1999.
[6]  H. Darmency, “The impact of hybrids between genetically modified crop plants and their related species: introgression and weediness,” Molecular Ecology, vol. 3, pp. 37–40, 1994.
[7]  R. K. Colwell, E. A. Norse, D. Pimentel, F. E. Sharples, and D. Simberloff, “Genetic engineering in agriculture,” Science, vol. 229, no. 4709, pp. 111–112, 1985.
[8]  J. M. Tiedje, R. K. Colwell, Y. L. Grossman, et al., “The planned introduction of genetically engineered organisms: ecological considerations and recommendations,” Ecology, vol. 70, p. 298, 1989.
[9]  C. A. Hoffman, “Ecological risks of genetic engineering of crop plants: scientific and social analyses are critical to realize benefits of the new techniques,” BioScience, vol. 40, p. 434, 1990.
[10]  P. Kareiva, W. Morris, and C. M. Jacobi, “Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives,” Molecular Ecology, vol. 3, pp. 15–21, 1994.
[11]  R. S. Hails, “Genetically modified plants—the debate continues,” Trends in Ecology and Evolution, vol. 15, no. 1, pp. 14–18, 2000.
[12]  L. L. Wolfenbarger and P. R. Phifer, “The ecological risks and benefits of genetically engineered plants,” Science, vol. 290, no. 5499, pp. 2088–2093, 2000.
[13]  R. S. Hails and K. Morley, “Genes invading new populations: a risk assessment perspective,” Trends in Ecology and Evolution, vol. 20, no. 5, pp. 245–252, 2005.
[14]  A. A. Snow, D. A. Andow, P. Gepts et al., “Genetically engineered organisms and the environment: current status and recommendations,” Ecological Applications, vol. 15, no. 2, pp. 377–404, 2005.
[15]  A. A. Agrawal, “Overcompensation of plants in response to herbivory and the by-product benefits of mutualism,” Trends in Plant Science, vol. 5, no. 7, pp. 309–313, 2000.
[16]  T. Jermy, “Evolution of insect/host plant relationships,” American Naturalist, vol. 124, no. 5, pp. 609–630, 1984.
[17]  M. Crawley, Herbivory The Dynamics of Animal-Plant Interactions, vol. 10, University of California Press, Berkeley, Calif, USA, 1983.
[18]  A. J. Belsky, “Does herbivory benefit plants? A review of the evidence,” American Naturalist, vol. 127, no. 6, pp. 870–892, 1986.
[19]  M. J. Wise and W. G. Abrahamson, “Effects of resource availability on tolerance of herbivory: a review and assessment of three opposing models,” American Naturalist, vol. 169, no. 4, pp. 443–454, 2007.
[20]  D. J. Susko and B. Superfisky, “A comparison of artificial defoliation techniques using canola (Brassica napus),” Plant Ecology, vol. 202, no. 1, pp. 169–175, 2009.
[21]  R. M. Keane and M. J. Crawley, “Exotic plant invasions and the enemy release hypothesis,” Trends in Ecology and Evolution, vol. 17, no. 4, pp. 164–170, 2002.
[22]  I. M. Parker and G. S. Gilbert, “When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants,” Ecology, vol. 88, no. 5, pp. 1210–1224, 2007.
[23]  H. Liu and P. Stiling, “Testing the enemy release hypothesis: a review and meta-analysis,” Biological Invasions, vol. 8, no. 7, pp. 1535–1545, 2006.
[24]  D. Grzywacz, A. Rossbach, A. Rauf, D. A. Russell, R. Srinivasan, and A. M. Shelton, “Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa,” Crop Protection, vol. 29, no. 1, pp. 68–79, 2010.
[25]  S. G. Hegde, J. D. Nason, J. M. Clegg, and N. C. Ellstrand, “The evolution of California's wild radish has resulted in the extinction of its progenitors,” Evolution, vol. 60, no. 6, pp. 1187–1197, 2006.
[26]  M. J. Crawley, “Insect herbivores and plant population dynamics,” Annual Review of Entomology, vol. 34, pp. 531–564, 1989.
[27]  J. Bergelson, “Changes in fecundity do not predict invasiveness: a model study of transgenic plants,” Ecology, vol. 75, no. 1, pp. 249–252, 1994.
[28]  S. Y. Strauss and R. E. Irwin, “Ecological and evolutionary consequences of multispecies plant-animal interactions,” Annual Review of Ecology, Evolution, and Systematics, vol. 35, pp. 435–466, 2004.
[29]  S. Warwick and C. N. Stewart, “Crops come from wild plants—how domestication, transgenes, and linkage together shape ferality,” in Crop Ferality and Volunteerism, J. Gressel, Ed., p. 422, Taylor & Francis/CRC Press, Boca Raton, Fla, USA, 2005.
[30]  A. A. Snow and L. G. Campbell, “Can feral radishes become weeds?” in Crop Ferality and Volunteerism, J. Gressel, Ed., p. 422, Taylor & Francis, CRC Press, Boca Raton, Fla, USA, 2005.
[31]  A. M. Shapiro, “Non-diapause overwintering by Pieris rapae (Lepidoptera: Pieridae) and Papilio zelicaon (Lepidoptera: Papilionidae) in California: adaptiveness of Type III diapause-induction curves,” Psyche, vol. 91, pp. 161–169, 1984.
[32]  D. K. Letourneau, J. A. Hagen, and G. S. Robinson, “Bt-crops evaluating benefits under cultivation and risks from escaped transgenes in the wild,” in Genetically Engineered Organisms: Assessing Environmental and Human Health Effects, D. K. Letourneau and B. E. Burrows, Eds., p. 33, CRC Press, Boca Raton, Fla, USA, 2002.
[33]  D. K. Letourneau and L. R. Fox, “Effects of experimental design and nitrogen on cabbage butterfly oviposition,” Oecologia, vol. 80, no. 2, pp. 211–214, 1989.
[34]  R. S. Fritz and E. L. Simms, Plant Resistance to Herbivores and Pathogens : Ecology, Evolution, and Genetics, University of Chicago Press, Chicago, Ill, USA, 1992.
[35]  C. Kwit, H. S. Moon, S. I. Warwick, and C. N. Stewart, “Transgene introgression in crop relatives: molecular evidence and mitigation strategies,” Trends in Biotechnology, vol. 29, pp. 284–293, 2011.
[36]  R. B. Jorgensen and B. Andersen, “Spontaneous hybridization between oilseed rape (Brassica napus) and weedy Brassica campestris (Brassicaceae): a risk of growing genetically modified oilseed rape,” American Journal of Botany, vol. 81, no. 12, pp. 1620–1626, 1994.
[37]  M. A. Rieger, T. D. Potter, C. Preston, and S. B. Powles, “Hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions,” Theoretical and Applied Genetics, vol. 103, no. 4, pp. 555–560, 2001.
[38]  S. I. Warwick, M. J. Simard, A. Legere et al., “Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz,” Theoretical and Applied Genetics, vol. 107, no. 3, pp. 528–539, 2003.
[39]  H. Ammitzb?ll and R. Bagger J?rgensen, “Hybridization between oilseed rape (Brassica napus) and different populations and species of Raphanus,” Environmental Biosafety Research, vol. 5, no. 1, pp. 3–13, 2006.
[40]  R. G. Fitzjohn, T. T. Armstrong, L. E. Newstrom-Lloyd, A. D. Wilton, and M. Cochrane, “Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape,” Euphytica, vol. 158, no. 1-2, pp. 209–230, 2007.
[41]  G. Gueritaine, M. Sester, F. Eber, A.-M. Chevre, and H. Darmency, “Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum),” Molecular Ecology, vol. 11, no. 8, pp. 1419–1426, 2002.
[42]  E. Jenczewski, J. Ronfort, and A. M. Chèvre, “Crop-to-wild gene flow, introgression and possible fitness effects of transgenes,” Environmental Biosafety Research, vol. 2, no. 1, pp. 9–24, 2003.
[43]  M. Marvier and P. Kareiva, “Extrapolating from field experiments that remove herbivores to population-level effects of herbivore-resistant transgenes,” in Proceedings of the Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems, pp. 57–64, Bethesda, Md, USA, 1999.
[44]  A. A. Snow, D. Pilson, L. H. Rieseberg et al., “A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers,” Ecological Applications, vol. 13, no. 2, pp. 279–286, 2003.
[45]  A. Raybould and I. Cooper, “Tiered tests to assess the environmental risk of fitness changes in hybrids between transgenic crops and wild relatives: the example of virus resistant Brassica napus,” Environmental Biosafety Research, vol. 4, no. 3, pp. 127–140, 2005.
[46]  D. K. Letourneau and J. A. Hagen, “Plant fitness assessment for wild relatives of insect resistant crops,” Environmental Biosafety Research, vol. 8, no. 1, pp. 45–55, 2009.
[47]  B. Zhu, J. R. Lawrence, S. I. Warwick et al., “Stable Bacillus thuringiensis (Bt) toxin content in interspecific F 1 and backcross populations of wild Brassica rapa after Bt gene transfer,” Molecular Ecology, vol. 13, no. 1, pp. 237–241, 2004.
[48]  M. D. Halfhill, J. P. Sutherland, H. S. Moon et al., “Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes,” Molecular Ecology, vol. 14, no. 10, pp. 3177–3189, 2005.
[49]  H. Ammitzboll, T. N. Mikkelsen, and R. B. Jorgensen, “Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa,” Environmental Biosafety Research, vol. 4, no. 1, pp. 3–12, 2005.
[50]  J. Allainguillaume, M. Alexander, J. M. Bullock et al., “Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats,” Molecular Ecology, vol. 15, no. 4, pp. 1175–1184, 2006.
[51]  J. P. Londo, M. A. Bollman, C. L. Sagers, E. H. Lee, and L. S. Watrud, “Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L,” Heredity, vol. 107, pp. 328–337, 2011.
[52]  C. N. Stewart, J. N. All, P. L. Raymer, and S. Ramachandran, “Increased fitness of transgenic insecticidal rapeseed under insect selection pressure,” Molecular Ecology, vol. 6, no. 8, pp. 773–779, 1997.
[53]  K. Lehtila and S. Y. Strauss, “Effects of foliar herbivory on male and female reproductive traits of wild radish, Raphanus raphanistrum,” Ecology, vol. 80, no. 1, pp. 116–124, 1999.
[54]  A. A. Agrawal, S. Y. Strauss, and M. J. Stout, “Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish,” Evolution, vol. 53, no. 4, pp. 1093–1104, 1999.
[55]  G. A. Meyer, “Interactive effects of soil fertility and herbivory on Brassica nigra,” Oikos, vol. 88, no. 2, pp. 433–441, 2000.
[56]  C. Vacher, A. E. Weis, D. Hermann, T. Kossler, C. Young, and M. E. Hochberg, “Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa),” Theoretical and Applied Genetics, vol. 109, no. 4, pp. 806–814, 2004.
[57]  E. Boalt and K. Lehtil?, “Tolerance to apical and foliar damage: costs and mechanisms in Raphanus raphanistrum,” Oikos, vol. 116, no. 12, pp. 2071–2081, 2007.
[58]  M. Dicke, “Precise manipulation through a modeling study,” Journal of Chemical Ecology, vol. 34, no. 7, pp. 943–944, 2008.
[59]  C. B. Marshall, G. Avila-Sakar, and E. G. Reekie, “Effects of nutrient and CO2 availability on tolerance to herbivory in Brassica rapa,” Plant Ecology, vol. 196, no. 1, pp. 1–13, 2008.
[60]  R. A. Lankau, “Specialist and generalist herbivores exert opposing selection on a chemical defense,” New Phytologist, vol. 175, no. 1, pp. 176–184, 2007.
[61]  M. G. Bidart-Bouzat and D. J. Kliebenstein, “Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Arabidopsis thaliana,” Journal of Chemical Ecology, vol. 34, no. 8, pp. 1026–1037, 2008.
[62]  S. Y. Strauss, J. K. Conner, and K. P. Lehtil?, “Effects of foliar herbivory by insects on the fitness of Raphanus raphanistrum: damage can increase male fitness,” American Naturalist, vol. 158, no. 5, pp. 496–504, 2001.
[63]  S. E. Blatt, R. C. Smallegange, L. Hess, J. A. Harvey, M. Dicke, and J. J. A. van Loon, “Tolerance of Brassica nigra to Pieris brassicae herbivory,” Botany, vol. 86, no. 6, pp. 641–648, 2008.
[64]  D. A. Andow and C. Zwahlen, “Assessing environmental risks of transgenic plants,” Ecology Letters, vol. 9, no. 2, pp. 196–214, 2006.
[65]  J. M. Randall, “Weed control for the preservation of biological diversity,” Weed Technology, vol. 10, no. 2, pp. 370–383, 1996.
[66]  A. Hilbeck, “Implications of transgenic, insecticidal plants for insect and plant biodiversity,” Perspectives in Plant Ecology, Evolution and Systematics, vol. 4, no. 1, pp. 43–61, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133