全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biofuels Production from Biomass by Thermochemical Conversion Technologies

DOI: 10.1155/2012/542426

Full-Text   Cite this paper   Add to My Lib

Abstract:

Agricultural biomass as an energy resource has several environmental and economical advantages and has potential to substantially contribute to present days’ fuel demands. Currently, thermochemical processes for agricultural biomass to energy transformation seem promising and feasible. The relative advantage of thermochemical conversion over others is due to higher productivity and compatibility with existing infrastructure facilities. However, the majority of these processes are still under development phase and trying to secure a market share due to various challenges, right from suitable infrastructure, raw material, technical limitations, government policies, and social acceptance. The knowledge at hand suggests that biomass can become a sustainable and major contributor to the current energy demands, if research and development are encouraged in the field of thermochemical conversion for various agricultural biomass types. This paper intends to explore the physical and chemical characteristics of biofuel substitutes of fossil fuels, potential biomass sources, and process parameters for thermochemical conversion. 1. Introduction Current energy crisis is a product of tremendous amount of pressure on world fossil fuel supply and reserve, which is also implicated with the recent strides of economic developments of countries such as China and India, among others, which are net importers of fossil fuels [1]. The surge in fossil fuel cost (?US$150 per barrel) in the recent past clearly indicated that biomass-based fuel options could be more competitive during peak demand periods and a viable mode at other times. The increasing concern over climate change is another important factor that has highlighted the environmental benefits (minimal net greenhouse gas emissions) of the biomass utilization. Most recently, the deep sea crude oil spewing disaster in April 2010 (BP PLC.-Deepwater Horizon oil spill; about 207 million gallons within 3 months period) has undoubtedly confirmed the risks of over exploitation fossil fuel. This incident strengthen the notion of gradual implementation of safe renewable sources to fuel existing fleet of fossil fuel powered domestic, commercial, transportation, and industrial sector. Over the last several decades various researchers have investigated biomethanation, fermentation, and thermochemical pathways for the conversion of biomass to biofuels as energy sources, which is currently getting the attention that was deserved. In general, the biomass could be a complex mixture of organic materials such as carbohydrates

References

[1]  A. Steve, 2008 Oil Recap. and What is Next, 2009, http://www.oil-price.net/.
[2]  M. Baratieri, P. Baggio, L. Fiori, and M. Grigiante, “Biomass as an energy source: thermodynamic constraints on the performance of the conversion process,” Bioresource Technology, vol. 99, no. 15, pp. 7063–7073, 2008.
[3]  A. Oasmaa, Y. Solantausta, V. Arpiainen, E. Kuoppala, and K. Sipil?, “Fast pyrolysis bio-oils from wood and agricultural residues,” Energy and Fuels, vol. 24, no. 2, pp. 1380–1388, 2010.
[4]  http://www.btg-btl.com/index.php?r=technology.
[5]  W. T. Tsai, J. H. Chang, K. J. Hsien, and Y. M. Chang, “Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor,” Bioresource Technology, vol. 100, no. 1, pp. 406–412, 2009.
[6]  E. Salehi, J. Abedi, and T. Harding, “Bio-oil from sawdust: pyrolysis of sawdust in a fixed-bed system,” Energy and Fuels, vol. 23, no. 7, pp. 3767–3772, 2009.
[7]  K. B. Cantrell, T. Ducey, K. S. Ro, and P. G. Hunt, “Livestock waste-to-bioenergy generation opportunities,” Bioresource Technology, vol. 99, no. 17, pp. 7941–7953, 2008.
[8]  J. Martinez-Almela and J. M. Barrera, “SELCO-Ecopurin? pig slurry treatment system,” Bioresource Technology, vol. 96, no. 2, pp. 223–228, 2005.
[9]  Québec. Ministère de développement durable, Environnement et Parcs, Québec. Guide sur la valorisation des matières résiduelles fertilisantes Critères de référence et normes réglementaires, 2008.
[10]  L. Zhang, C. Xu, and P. Champagne, “Overview of recent advances in thermo-chemical conversion of biomass,” Energy Conversion and Management, vol. 51, no. 5, pp. 969–982, 2010.
[11]  J. A. Conesa, R. Font, A. Fullana et al., “Comparison between emissions from the pyrolysis and combustion of different wastes,” Journal of Analytical and Applied Pyrolysis, vol. 84, no. 1, pp. 95–102, 2009.
[12]  A. V. Bridgwater, A. J. Toft, and J. G. Brammer, “A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion,” Renewable and Sustainable Energy Reviews, vol. 6, no. 3, pp. 181–246, 2002.
[13]  L. Deng, Z. Yan, Y. Fu, and Q. X. Guo, “Green solvent for flash pyrolysis oil separation,” Energy and Fuels, vol. 23, no. 6, pp. 3337–3338, 2009.
[14]  H. Guoxin, H. Hao, and L. Yanhong, “Hydrogen-rich gas production from pyrolysis of biomass in an autogenerated steam atmosphere,” Energy and Fuels, vol. 23, no. 3, pp. 1748–1753, 2009.
[15]  K. S. Ro, K. B. Cantrell, P. G. Hunt, T. F. Ducey, M. B. Vanotti, and A. A. Szogi, “Thermochemical conversion of livestock wastes: carbonization of swine solids,” Bioresource Technology, vol. 100, no. 22, pp. 5466–5471, 2009.
[16]  X. Wang, H. Chen, K. Luo, J. Shao, and H. Yang, “The influence of microwave drying on biomass pyrolysis,” Energy and Fuels, vol. 22, no. 1, pp. 67–74, 2008.
[17]  D. Meier and O. Faix, “State of the art of applied fast pyrolysis of lignocellulosic materials—a review,” Bioresource Technology, vol. 68, no. 1, pp. 71–77, 1999.
[18]  G. Carucci, F. Carrasco, K. Trifoni, M. Majone, and M. Beccari, “Anaerobic digestion of food industry wastes: effect of codigestion on methane yield,” Journal of Environmental Engineering, vol. 131, no. 7, pp. 1037–1045, 2005.
[19]  K. B. Cantrell, K. C. Stone, P. G. Hunt, K. S. Ro, M. B. Vanotti, and J. C. Burns, “Bioenergy from Coastal bermudagrass receiving subsurface drip irrigation with advance-treated swine wastewater,” Bioresource Technology, vol. 100, no. 13, pp. 3285–3292, 2009.
[20]  L. Catoire, M. Yahyaoui, A. Osmont et al., “Thermochemistry of compounds formed during fast pyrolysis of lignocellulosic biomass,” Energy and Fuels, vol. 22, no. 6, pp. 4265–4273, 2008.
[21]  M. Müller-Hagedorn and H. Bockhorn, “Pyrolytic behaviour of different biomasses (angiosperms) (maize plants, straws, and wood) in low temperature pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1-2, pp. 136–146, 2007.
[22]  A. Demirbas, “Effect of initial moisture content on the yields of oily products from pyrolysis of biomass,” Journal of Analytical and Applied Pyrolysis, vol. 71, no. 2, pp. 803–815, 2004.
[23]  P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production,” Industrial and Engineering Chemistry Research, vol. 48, no. 8, pp. 3713–3729, 2009.
[24]  D. R. Keshwani and J. J. Cheng, “Switchgrass for bioethanol and other value-added applications: a review,” Bioresource Technology, vol. 100, no. 4, pp. 1515–1523, 2009.
[25]  R. Manurung, D. A. Z. Wever, J. Wildschut et al., “Valorisation of Jatropha curcas L. plant parts: nut shell conversion to fast pyrolysis oil,” Food and Bioproducts Processing, vol. 87, no. 3, pp. 187–196, 2009.
[26]  J. Yang and K. Q. Qiu, “Preparation of activated carbon by chemical activation under vacuum,” Environmental Science and Technology, vol. 43, no. 9, pp. 3385–3390, 2009.
[27]  S. Czernik and A. V. Bridgwater, “Overview of applications of biomass fast pyrolysis oil,” Energy and Fuels, vol. 18, no. 2, pp. 590–598, 2004.
[28]  F. Ate? and M. A. I?ikda?, “Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GC/MS,” Energy and Fuels, vol. 22, no. 3, pp. 1936–1943, 2008.
[29]  A. M. Azeez, D. Meier, J. Odermatt, and T. Willner, “Fast pyrolysis of African and European lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor,” Energy and Fuels, vol. 24, no. 3, pp. 2078–2085, 2010.
[30]  P. Bhattacharya, P. H. Steele, E. B. M. Hassan, B. Mitchell, L. Ingram, and C. U. Pittman, “Wood/plastic copyrolysis in an auger reactor: chemical and physical analysis of the products,” Fuel, vol. 88, no. 7, pp. 1251–1260, 2009.
[31]  A. A. Boateng, D. E. Daugaard, N. M. Goldberg, and K. B. Hicks, “Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production,” Industrial and Engineering Chemistry Research, vol. 46, no. 7, pp. 1891–1897, 2007.
[32]  I. Fonts, M. Azuara, G. Gea, and M. B. Murillo, “Study of the pyrolysis liquids obtained from different sewage sludge,” Journal of Analytical and Applied Pyrolysis, vol. 85, no. 1-2, pp. 184–191, 2009.
[33]  M. Garcìa-Pérez, A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy, “Vacuum pyrolysis of softwood and hardwood biomass. Comparison between product yields and bio-oil properties,” Journal of Analytical and Applied Pyrolysis, vol. 78, no. 1, pp. 104–116, 2007.
[34]  B. J. He, Y. Zhang, T. L. Funk, G. L. Riskowski, and Y. Yin, “Thermochemical conversion of swine mamure: an alternative process for waste treatment and renewable energy production,” Transactions of the American Society of Agricultural Engineers, vol. 43, no. 6, pp. 1827–1833, 2000.
[35]  R. N. Hilten, B. P. Bibens, J. R. Kastner, and K. C. Das, “In-line esterification of pyrolysis vapor with ethanol improves Bio-oil quality,” Energy and Fuels, vol. 24, no. 1, pp. 673–682, 2010.
[36]  X. Miao and Q. Wu, “High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides,” Journal of Biotechnology, vol. 110, no. 1, pp. 85–93, 2004.
[37]  C. A. Mullen, A. A. Boateng, N. M. Goldberg, I. M. Lima, D. A. Laird, and K. B. Hicks, “Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis,” Biomass and Bioenergy, vol. 34, no. 1, pp. 67–74, 2010.
[38]  C. A. Mullen, A. A. Boateng, K. B. Hicks, N. M. Goldberg, and R. A. Moreau, “Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams,” Energy and Fuels, vol. 24, no. 1, pp. 699–706, 2010.
[39]  B. B. Uzun, A. E. Pütün, and E. Pütün, “Composition of products obtained via fast pyrolysis of olive-oil residue: effect of pyrolysis temperature,” Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1-2, pp. 147–153, 2007.
[40]  S. Xiu, A. Shahbazi, V. Shirley, M. R. Mims, and C. W. Wallace, “Effectiveness and mechanisms of crude glycerol on the biofuel production from swine manure through hydrothermal pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 87, no. 2, pp. 194–198, 2010.
[41]  S. Xiu, A. Shahbazi, V. Shirley, and D. Cheng, “Hydrothermal pyrolysis of swine manure to bio-oil: effects of operating parameters on products yield and characterization of bio-oil,” Journal of Analytical and Applied Pyrolysis, vol. 88, no. 1, pp. 73–79, 2010.
[42]  S. Yin, R. Dolan, M. Harris, and Z. Tan, “Subcritical hydrothermal liquefaction of cattle manure to bio-oil: effects of conversion parameters on bio-oil yield and characterization of bio-oil,” Bioresource Technology, vol. 101, no. 10, pp. 3657–3664, 2010.
[43]  H. Zhang, R. Xiao, H. Huang, and G. Xiao, “Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor,” Bioresource Technology, vol. 100, no. 3, pp. 1428–1434, 2009.
[44]  D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of wood/biomass for bio-oil: a critical review,” Energy and Fuels, vol. 20, no. 3, pp. 848–889, 2006.
[45]  T. A. Milne, F. Agblevor, M. Davis, S. Deutch, and D. Johnson, “A review of chemical composition of fast pyrolysis oils,” in Developments in thermochemical biomass conversion, A. V. Bridgwater, Ed., pp. 409–424, Blackie Academic and Professional, London, UK, 1997.
[46]  A. Oasmaa, E. Kuoppala, and Y. Solantausta, “Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid,” Energy and Fuels, vol. 17, no. 2, pp. 433–443, 2003.
[47]  A. Demirba?, “Mechanisms of liquefaction and pyrolysis reactions of biomass,” Energy Conversion and Management, vol. 41, no. 6, pp. 633–646, 2000.
[48]  A. Oasmaa, E. Kuoppala, J. F. Selin, S. Gust, and Y. Solantausta, “Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition,” Energy and Fuels, vol. 18, no. 5, pp. 1578–1583, 2004.
[49]  K. I. Kuroda and D. R. Dimmel, “Effect of pyrofoil composition on pyrolysis of lignin,” Journal of Analytical and Applied Pyrolysis, vol. 62, no. 2, pp. 259–271, 2002.
[50]  F. L. Brown, Theories on the combustion of wood and its control. US Forest Product Lab Rep, 1958.
[51]  X. Cao and W. Harris, “Properties of dairy-manure-derived biochar pertinent to its potential use in remediation,” Bioresource Technology, vol. 101, no. 14, pp. 5222–5228, 2010.
[52]  B. O. Dias, C. A. Silva, F. S. Higashikawa, A. Roig, and M. A. Sánchez-Monedero, “Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification,” Bioresource Technology, vol. 101, no. 4, pp. 1239–1246, 2010.
[53]  D. Kalderis, S. Bethanis, P. Paraskeva, and E. Diamadopoulos, “Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times,” Bioresource Technology, vol. 99, no. 15, pp. 6809–6816, 2008.
[54]  J. L. Gaunt and J. Lehmann, “Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production,” Environmental Science and Technology, vol. 42, no. 11, pp. 4152–4158, 2008.
[55]  M. Rondon, J. Ramirez, and J. Lehmann, “Charcoal additions reduce net emissions of greenhouse gases to the atmosphere,” in Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, p. 208, Baltimore, Md, USA, March 2005.
[56]  D. D. Warnock, J. Lehmann, T. W. Kuyper, and M. C. Rillig, “Mycorrhizal responses to biochar in soil—concepts and mechanisms,” Plant and Soil, vol. 300, no. 1-2, pp. 9–20, 2007.
[57]  H. Abdullah and H. Wu, “Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions,” Energy and Fuels, vol. 23, no. 8, pp. 4174–4181, 2009.
[58]  C. Acikgoz, O. Onay, and O. M. Kockar, “Fast pyrolysis of linseed: product yields and compositions,” Journal of Analytical and Applied Pyrolysis, vol. 71, no. 2, pp. 417–429, 2004.
[59]  D. Mohan, C. U. Pittman, M. Bricka et al., “Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production,” Journal of Colloid and Interface Science, vol. 310, no. 1, pp. 57–73, 2007.
[60]  C. J. Mulligan, L. Strezov, and V. Strezov, “Thermal decomposition of wheat straw and mallee residue under pyrolysis conditions,” Energy and Fuels, vol. 24, no. 1, pp. 46–52, 2010.
[61]  H. Yang, R. Yan, H. Chen, D. H. Lee, D. T. Liang, and C. Zheng, “Mechanism of palm oil waste pyrolysis in a packed bed,” Energy and Fuels, vol. 20, no. 3, pp. 1321–1328, 2006.
[62]  V. Tihay and P. Gillard, “Pyrolysis gases released during the thermal decomposition of three Mediterranean species,” Journal of Analytical and Applied Pyrolysis, vol. 88, no. 2, pp. 168–174, 2010.
[63]  R. L. Johnson, S. S. Liaw, M. Garcia-Perez et al., “Pyrolysis gas chromatography mass spectrometry studies to evaluate high-temperature aqueous pretreatment as a way to modify the composition of bio-oil from fast pyrolysis of wheat straw,” Energy and Fuels, vol. 23, no. 12, pp. 6242–6252, 2009.
[64]  R. Zhang, H. M. El-Mashad, K. Hartman et al., “Characterization of food waste as feedstock for anaerobic digestion,” Bioresource Technology, vol. 98, no. 4, pp. 929–935, 2007.
[65]  M. C. Blanco López, C. G. Blanco, A. Martínez-Alonso, and J. M. D. Tascón, “Composition of gases released during olive stones pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 65, no. 2, pp. 313–322, 2002.
[66]  S. Rappert and R. Müller, “Odor compounds in waste gas emissions from agricultural operations and food industries,” Waste Management, vol. 25, no. 9, pp. 887–907, 2005.
[67]  Statistics Canada, Computing in the Humanities and Social Sciences (CHASS), Canadian Socio-Economic Information Management (CANSIM), University of Toronto Data Library Service, Toronto, Canada, 2007.
[68]  R. Lal, “Soil carbon sequestration impacts on global climate change and food security,” Science, vol. 304, no. 5677, pp. 1623–1627, 2004.
[69]  P. B. Weisz, “Basic choices and constraints on long-term energy supplies,” Physics Today, vol. 57, no. 7, pp. 47–52, 2004.
[70]  I. Demiral and S. ?ens?z, “The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse),” Bioresource Technology, vol. 99, no. 17, pp. 8002–8007, 2008.
[71]  S. Werle and R. K. Wilk, “A review of methods for the thermal utilization of sewage sludge: the Polish perspective,” Renewable Energy, vol. 35, no. 9, pp. 1914–1919, 2010.
[72]  M. H. Romdhana, A. Hamasaiid, B. Ladevie, and D. Lecomte, “Energy valorization of industrial biomass: using a batch frying process for sewage sludge,” Bioresource Technology, vol. 100, no. 15, pp. 3740–3744, 2009.
[73]  S. Yaman, “Pyrolysis of biomass to produce fuels and chemical feedstocks,” Energy Conversion and Management, vol. 45, no. 5, pp. 651–671, 2004.
[74]  H. P. Wenning, “The VEBA OEL technologie pyrolysis process,” Journal of Analytical and Applied Pyrolysis, vol. 25, pp. 301–310, 1993.
[75]  A. N. García, R. Font, and A. Marcilla, “Kinetic studies of the primary pyrolysis of municipal solid waste in a Pyroprobe 1000,” Journal of Analytical and Applied Pyrolysis, vol. 23, no. 1, pp. 99–119, 1992.
[76]  E. Chornet and R. P. Overend, Fundamentals of Thermochemical Biomass Conversion, Academic Press, Amsterdam, The Netherlands, 1985.
[77]  J. A. Russell, R. K. Miller, and P. M. Molton, “Formation of aromatic compounds from condensation reactions of cellulose degradation products,” Biomass, vol. 3, no. 1, pp. 43–57, 1983.
[78]  H. R. Appell, “The production of oil from wood waste,” in Fuels from Waste, L. Anderson and D. A. Tilman, Eds., Academic Press, New York, NY, USA, 1977.
[79]  S. Sadaka and S. Negi, “Improvements of biomass physical and thermochemical characteristics via torrefaction process,” Environmental Progress and Sustainable Energy, vol. 28, no. 3, pp. 427–434, 2009.
[80]  T. Phuphuakrat, N. Nipattummakul, T. Namioka, S. Kerdsuwan, and K. Yoshikawa, “Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge,” Fuel, vol. 89, no. 9, pp. 2278–2284, 2010.
[81]  A. G. Barneto, J. A. Carmona, A. Gálvez, and J. A. Conesa, “Effects of the composting and the heating rate on biomass gasification,” Energy and Fuels, vol. 23, no. 2, pp. 951–957, 2009.
[82]  X. J. Guo, B. Xiao, X. L. Zhang, S. Y. Luo, and M. Y. He, “Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier,” Bioresource Technology, vol. 100, no. 2, pp. 1003–1006, 2009.
[83]  E. Chornet, D. Wang, S. Montane, S. Czernik, D. Johnson, and M. Mann, “Biomass to hydrogen via fast pyrolysis and catalytic steam reforming,” in Proceedings of the U.S. DOE Hydrogen Program Review, pp. 707–730, Coral Gables, Fla, USA, 1995.
[84]  D. S. Scott, P. Majerski, J. Piskorz, and D. Radlein, “Second look at fast pyrolysis of biomass—the RTI process,” Journal of Analytical and Applied Pyrolysis, vol. 51, no. 1, pp. 23–37, 1999.
[85]  G. V. C. Peacocke and A. V. Bridgwater, “Ablative plate pyrolysis of biomass for liquids,” Biomass and Bioenergy, vol. 7, no. 1–6, pp. 147–154, 1994.
[86]  W. T. Tsai, M. K. Lee, and Y. M. Chang, “Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor,” Journal of Analytical and Applied Pyrolysis, vol. 76, no. 1-2, pp. 230–237, 2006.
[87]  W. T. Tsai, M. K. Lee, and Y. M. Chang, “Fast pyrolysis of rice husk: product yields and compositions,” Bioresource Technology, vol. 98, no. 1, pp. 22–28, 2007.
[88]  E. Schr?der, “Experiments on the pyrolysis of large beechwood particles in fixed beds,” Journal of Analytical and Applied Pyrolysis, vol. 71, no. 2, pp. 669–694, 2004.
[89]  M. J. Lázaro, R. Moliner, I. Suelves, C. Domeo, and C. Nerín, “Co-pyrolysis of a mineral waste oil/coal slurry in a continuous-mode fluidized bed reactor,” Journal of Analytical and Applied Pyrolysis, vol. 65, no. 2, pp. 239–252, 2002.
[90]  R. Font, A. Marcilla, J. Devesa, and E. Verdú, “Kinetic study of the flash pyrolysis of almond shells in a fluidized bed reactor at high temperatures,” Journal of Analytical and Applied Pyrolysis, vol. 27, no. 2, pp. 245–273, 1993.
[91]  D. A. Johnson, D. Maclean, J. Feller, J. Diebold, and H. L. Chum, “Developments in the scale-up of the vortex-pyrolysis system,” Biomass and Bioenergy, vol. 7, no. 1–6, pp. 259–266, 1994.
[92]  T. Damartzis, G. Ioannidis, and A. Zabaniotou, “Simulating the behavior of a wire mesh reactor for olive kernel fast pyrolysis,” Chemical Engineering Journal, vol. 136, no. 2-3, pp. 320–330, 2008.
[93]  C. Di Blasi, “Heat transfer mechanisms and multi-step kinetics in the ablative pyrolysis of cellulose,” Chemical Engineering Science, vol. 51, no. 10, pp. 2211–2220, 1996.
[94]  R. Helleur, N. Popovic, M. Ikura, M. Stanciulescu, and D. Liu, “Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires,” Journal of Analytical and Applied Pyrolysis, vol. 58-59, pp. 813–824, 2001.
[95]  J. Lédé, “Comparison of contact and radiant ablative pyrolysis of biomass,” Journal of Analytical and Applied Pyrolysis, vol. 70, no. 2, pp. 601–618, 2003.
[96]  H. Martin, J. Lede, H. Z. Li, J. Villermaux, C. Moyne, and A. Degiovanni, “Ablative melting of a solid cylinder perpendicularly pressed against a heated wall,” International Journal of Heat and Mass Transfer, vol. 29, no. 9, pp. 1407–1415, 1986.
[97]  C. Di Blasi, A. Galgano, and C. Branca, “Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis,” Industrial and Engineering Chemistry Research, vol. 48, no. 7, pp. 3359–3369, 2009.
[98]  EnerSysNet LLC, personal communication, http://www.biogreen-energy.com/biogreen.html.
[99]  B. Masemore and R. Zarrizski, Apparatus for pyrolyzing tire shreds and tire pyrolysis systems. United States Patent 7329329, 2008.
[100]  R. M. Satchwell and R. M. Facey, Thermal remediation process. United States Patent 6840712, 2005.
[101]  A. Boguslavsky and Y. Rabiner, Method and apparatus for treating refuse. United States Patent 6202577, 2001.
[102]  B. P. Faulkner, R. J. Unterweger, and R. W. Hansen, Pyrolysis process for reclaiming desirable materials from vehicle tires. United States Patent 6221329, 2001.
[103]  J. Moriarty, B. Moriarty, and N. Moriarty, Pyrolizer. United States Patent 5993751, 1999.
[104]  W. R. Meador, Method and apparatus for recovering constituents from discarded tires. United States Patent 5720232, 1998.
[105]  D. R. Kanis, Pyrolysis system and a method of pyrolyzing. United States Patent 5636580, 1997.
[106]  D. D. Thomas, Horizontal oil shale and tar sands retort. United States Patent 4347119, 1982.
[107]  P. R. Ryason, Continuous coal processing method. United States Patent 4206713, 1980.
[108]  C. Roy, A. Chaala, and H. Darmstadt, “Vacuum pyrolysis of used tires end-uses for oil and carbon black products,” Journal of Analytical and Applied Pyrolysis, vol. 51, no. 1, pp. 201–221, 1999.
[109]  A. V. Bridgwater, “Principles and practice of biomass fast pyrolysis processes for liquids,” Journal of Analytical and Applied Pyrolysis, vol. 51, no. 1, pp. 3–22, 1999.
[110]  M. P. Bernal, J. A. Alburquerque, and R. Moral, “Composting of animal manures and chemical criteria for compost maturity assessment. A review,” Bioresource Technology, vol. 100, no. 22, pp. 5444–5453, 2009.
[111]  P. Wang, C. M. Changa, M. E. Watson, W. A. Dick, Y. Chen, and H. A. J. Hoitink, “Maturity indices for composted dairy and pig manures,” Soil Biology and Biochemistry, vol. 36, no. 5, pp. 767–776, 2004.
[112]  P. C. Badger and P. Fransham, “Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—a preliminary assessment,” Biomass and Bioenergy, vol. 30, no. 4, pp. 321–325, 2006.
[113]  N. Mahinpey, P. Murugan, T. Mani, and R. Raina, “Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor,” Energy and Fuels, vol. 23, no. 5, pp. 2736–2742, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133