%0 Journal Article %T Biofuels Production from Biomass by Thermochemical Conversion Technologies %A M. Verma %A S. Godbout %A S. K. Brar %A O. Solomatnikova %A S. P. Lemay %A J. P. Larouche %J International Journal of Chemical Engineering %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/542426 %X Agricultural biomass as an energy resource has several environmental and economical advantages and has potential to substantially contribute to present days¡¯ fuel demands. Currently, thermochemical processes for agricultural biomass to energy transformation seem promising and feasible. The relative advantage of thermochemical conversion over others is due to higher productivity and compatibility with existing infrastructure facilities. However, the majority of these processes are still under development phase and trying to secure a market share due to various challenges, right from suitable infrastructure, raw material, technical limitations, government policies, and social acceptance. The knowledge at hand suggests that biomass can become a sustainable and major contributor to the current energy demands, if research and development are encouraged in the field of thermochemical conversion for various agricultural biomass types. This paper intends to explore the physical and chemical characteristics of biofuel substitutes of fossil fuels, potential biomass sources, and process parameters for thermochemical conversion. 1. Introduction Current energy crisis is a product of tremendous amount of pressure on world fossil fuel supply and reserve, which is also implicated with the recent strides of economic developments of countries such as China and India, among others, which are net importers of fossil fuels [1]. The surge in fossil fuel cost (£¿US$150 per barrel) in the recent past clearly indicated that biomass-based fuel options could be more competitive during peak demand periods and a viable mode at other times. The increasing concern over climate change is another important factor that has highlighted the environmental benefits (minimal net greenhouse gas emissions) of the biomass utilization. Most recently, the deep sea crude oil spewing disaster in April 2010 (BP PLC.-Deepwater Horizon oil spill; about 207 million gallons within 3 months period) has undoubtedly confirmed the risks of over exploitation fossil fuel. This incident strengthen the notion of gradual implementation of safe renewable sources to fuel existing fleet of fossil fuel powered domestic, commercial, transportation, and industrial sector. Over the last several decades various researchers have investigated biomethanation, fermentation, and thermochemical pathways for the conversion of biomass to biofuels as energy sources, which is currently getting the attention that was deserved. In general, the biomass could be a complex mixture of organic materials such as carbohydrates %U http://www.hindawi.com/journals/ijce/2012/542426/