全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion

DOI: 10.1155/2012/898742

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of biodiesel in conventional diesel engines results in increased emissions; this presents a barrier to the widespread use of biodiesel. The origins of this phenomenon were investigated using the chemical kinetics simulation tool: CHEMKIN-2 and the CFD KIVA3V code, which was modified to account for the physical properties of biodiesel and to incorporate semidetailed mechanisms for its combustion and the formation of emissions. Parametric ?-T maps and 3D engine simulations were used to assess the impact of using oxygen-containing fuels on the rate of NO formation. It was found that using oxygen-containing fuels allows more O2 molecules to present in the engine cylinder during the combustion of biodiesel, and this may be the cause of the observed increase in NO emissions. 1. Introduction Biodiesel fuels consist of long-chain monoalkyl esters derived from vegetable oils and expected to be increasingly important alternatives or supplements to conventional diesel fuel for use in diesel engines. However, in many studies, as summarized in [1], it was observed that the use of biodiesel in engines causes more emissions than are generated when using conventional diesel fuel. Numerous experimental and numerical studies have been conducted in order to better understand the origins of the increased emissions, and various explanations have been proposed on the basis of their results; the literature in this area has been reviewed by Mueller et al. [2]. Broadly speaking, two classes of explanation have been put forward: engine calibration effects [3] and combustion effects, such as higher flame temperatures [4, 5], injection timing shifting due to high bulk modulus [6], shorter autoignition delays, or combinations of these factors [2]. While these studies indicate that the increased emissions have multiple causes, it is generally accepted that the specific combustion chemistry of biodiesel is probably a major factor. Some of the factors listed have already been shown to have only minor effects on the amount of produced, including the adiabatic flame temperature [4] and the high-bulk modulus of biodiesel [7]. However, the fundamental principles underpinning these increased emissions remain elusive, and current experimental techniques have not yet proven to be sufficient for their identification. Consequently, computational modeling of biodiesel spray combustion is an attractive tool for obtaining new insights into the origins of the elevated emissions observed when using biodiesel fuels in conventional diesel engines. To determine the equilibrium compositions and

References

[1]  The US Environmental Protection Agency, “A comprehensive analysis of biodiesel impacts on exhaust emissions,” Tech. Rep. EPA420-P-02001, 2002.
[2]  C. J. Mueller, A. L. Boehman, and G. C. Martin, “An experimental investigation of the origin of increased emissions when fueling a heavy-duty compression-ignition engine with soy biodiesel,” SAE Paper 2009-01-1792, 2009.
[3]  W. A. Eckerle, E. J. Lyford-Pike, D. Stanton, J. Wall, L. La-Pointe, and S. Whitacre, “Effects of methyl-ester biodiesel blends on production,” SAE Paper 2008-01-0078, 2008.
[4]  S. K. Jha, S. Fernando, and S. D. F. To, “Flame temperature analysis of biodiesel blends and components,” Fuel, vol. 87, no. 10-11, pp. 1982–1988, 2008.
[5]  G. A. Ban-Weiss, J. Y. Chen, B. A. Buchholz, and R. W. Dibble, “A numerical investigation into the anomalous slight increase when burning biodiesel; A new (old) theory,” Fuel Processing Technology, vol. 88, no. 7, pp. 659–667, 2007.
[6]  A. L. Boehman, D. Morris, J. Szybist, and E. Esen, “The impact of the bulk modulus of diesel fuels on fuel injection timing,” Energy & Fuels, vol. 18, no. 6, pp. 1877–1882, 2004.
[7]  P. Ye and A. L. Boehman, “Investigation of the impact of engine injection strategy on the biodiesel effect with a common-rail turbocharged direct injection diesel engine,” Energy & Fuels, vol. 24, no. 8, pp. 4215–4225, 2010.
[8]  W. C. Reynolds, Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN, Department of Mechanical Engineering, Stanford University, 1986.
[9]  P. Glarborg, J. F. Grcar, and J. A. Miller, “PSR: a fortran program for modeling well-stirred reactors,” Gov Pub SAND86-8209, 1992.
[10]  J. Gustavsson and V. I. Golovitchev, “Spray combustion simulation based on detailed chemistry approach for diesel fuel surrogate model,” SAE Paper 2003-01-1848, 2003.
[11]  V. I. Golovitchev and J. Yang, “Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications,” Biotechnology Advances, vol. 27, no. 5, pp. 641–655, 2009.
[12]  D. L. Baulch, C. J. Cobos, R. A. Cox et al., “Summary table of evaluated kinetic data for combustion modeling,” Combustion and Flame, vol. 98, no. 1-2, pp. 59–79, 1994.
[13]  A. A. Konnov, “Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism,” Combustion and Flame, vol. 156, no. 11, pp. 2093–2115, 2009.
[14]  A. A. Amsden, “KIVA-3V: a block-structured KIVA program for engines with vertical or canted valves,” Tech. Rep. LA-13313-MS, Los Alamos, NM, USA, 1997.
[15]  J. C. Beale and R. D. Reitz, “Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model,” Automization and Sprays, vol. 9, no. 6, pp. 623–650, 1999.
[16]  G. Adi, C. Hall, D. Snyder et al., “Soy-biodiesel impact on emissions and fuel economy for diffusion-dominated combustion in a turbo—diesel engine incorporating exhaust gas recirculation and common rail fuel injection,” Energy & Fuels, vol. 23, no. 12, pp. 5821–5829, 2009.
[17]  M. J. Holst, Notes on The KIVA-II Software and Chemically Reactive Fluid Mechanics, Lawrence Livermore National Laboratory, 1992.
[18]  V. I. Golovitchev, N. Nordin, R. Jarnicki, and J. Chomiak, “3-D diesel spray simulation using new detailed chemistry turbulent combustion model,” SAE Paper 2000-01-1891, 2000.
[19]  R. O. Fox, “On the relationship between Lagrangian micromixing models and computational fluid dynamics,” Chemical Engineering and Processing: Process Intensification, vol. 37, no. 6, pp. 521–535, 1998.
[20]  U. Frisch, Turbulence, Cambridge University Press, Cambridge, UK, 1995.
[21]  V. I. Golovitchev, K. Atarashiya, K. Tanaka, and S. Yamada, “Towards universal EDC-based combustion model for compression ignition engine simulation,” SAE Paper 2003-01-1849, 2003.
[22]  S. C. Kong, C. D. Marriott, C. J. Rutland, and R. D. Reitz, “Experiments and CFD modeling of direct injection gasoline HCCI engine combustion,” SAE Paper 2002-01-1925, 2002.
[23]  D. Veynante and L. Vervisch, “Turbulent combustion modeling,” Progress in Energy and Combustion Science, vol. 28, no. 3, pp. 193–266, 2002.
[24]  S. M. Aceves, D. L. Flowers, J-Y. Cheng, and A. Babajimopoulos, “Fast prediction of HCCI combustion with an artificial neural network linked to a fluid mechanics code,” SAE Paper 2006-01-3298, 2006.
[25]  ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/BURCAT.THR.
[26]  J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Progress in Energy and Combustion Science, vol. 15, no. 4, pp. 287–338, 1989.
[27]  Y. B. Zeldovich, P. Y. Sadovnikov, and D. A. Frank-Kamenetskii, Oxidation of Nitrogen in Combustion, Academy of Sciences of the USSR, Moscow, Russia, 1947.
[28]  Y. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosion, Consultants Bureau, New York, NY, USA, 1985.
[29]  J. Wolfrum, “Bildung von stickstoffoxiden bei der verbrennung,” Chemie-Ingenieur-Technik, vol. 44, no. 10, pp. 656–659, 1972.
[30]  J. Warnatz, U. Maas, and R. W. Dibble, Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer, 4th edition, 2006.
[31]  J. Tomeczek and B. Gradon, “The role of nitrous oxide in the mechanism of thermal nitric oxide formation within flame temperature range,” Combustion Science and Technology, vol. 125, pp. 159–180, 1997.
[32]  J. Tomeczek and B. Gradoń, “The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames,” Combustion and Flame, vol. 133, no. 3, pp. 311–322, 2003.
[33]  A. A. Konnov and I. V. Dyakov, “Nitrous oxide conversion in laminar premixed flames of CH4?+?O2?+?Ar,” Proceedings of the Combustion Institute, vol. 32, no. 1, pp. 319–326, 2009.
[34]  C. P. Fenimore, “Studies of fuel-nitrogen species in rich flame gases,” in Proceedings of the 17th Symposium (International) on Combustion, pp. 661–670, The Combustion Institute, Pittsburgh, Pa, USA, 1979.
[35]  G. P. Smith, “Evidence of NCN as a flame intermediate for prompt NO,” Chemical Physics Letters, vol. 367, no. 5-6, pp. 541–548, 2003.
[36]  L. V. Moskaleva and M. C. Lin, “The spin-conserved reaction CH?+?N2→ H?+?NCN: a major pathway to prompt NO studied by quantum/statistical theory calculations and kinetic modeling of rate constant,” Symposium (International) on Combustion, vol. 28, no. 2, pp. 2393–2402, 2000.
[37]  B. A. Williams and J. W. Fleming, “Experimental and modeling study of NO formation in 10 torr methane and propane flames: evidence for additional prompt-NO precursors,” Proceedings of the Combustion Institute, vol. 31, no. 1, pp. 1109–1117, 2007.
[38]  B. A. Williams, J. A. Sutton, and J. W. Fleming, “The role of methylene in prompt NO formation,” Proceedings of the Combustion Institute, vol. 32, no. 1, pp. 343–350, 2009.
[39]  J. W. Bozzelli and A. M. Dean, “O?+?NNH: a possible new route for formation in flames,” International Journal of Chemical Kinetics, vol. 27, p. 1097, 1995.
[40]  A. A. Konnov and J. D. Ruych, “A possible new route forming NO via N2H3,” in Proceedings of the 28th Symposium (International) on Combustion, Edinburgh, UK, 2000.
[41]  P. A. Glaude, O. Herbinet, S. Bax, J. Biet, V. Warth, and F. Battin-Leclerc, “Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor,” Combustion and Flame, vol. 157, no. 11, pp. 2035–2050, 2010.
[42]  J. L. Brakora, Y. Ra, R. D. Reitz, M. Joanna, and C. D. Stuart, “Development and validation of a reduced reaction mechanism for biodiesel-fueled engine simulations,” SAE Paper 2008-01-1378, 2008.
[43]  O. Herbinet, W. J. Pitz, and C. K. Westbrook, “Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate,” Combustion and Flame, vol. 154, no. 3, pp. 507–528, 2008.
[44]  T. E. Daubert and R. P. Danner, “Physical and Thermodynamic Properties of Pure Chemicals,” Part 4, 1989.
[45]  F. Battin-Leclerc, R. Bounaceur, G. M. C?me et al., EXGAS-Alkanes, A Software for the Automatic Generation of Mechanisms for the Oxidation of Alkanes, User Guide, Cedex, France, 2004.
[46]  K. Akihama, Y. Takatori, K. Inagaki, S. Sasaki, and A. M. Dean, “Mechanism of the smokeless rich diesel combustion by reducing temperature,” SAE Paper 2001-01-0655, 2001.
[47]  V. I. Golovitchev, A. T. Calik, and L Montorsi, “Analysis of combustion regimes in compression ignited engines using parametric ?-T dynamic maps,” SAE Paper 2007-01-1838, 2007.
[48]  A. E. Lutz, R. J. Kee, and J. A. Miller, “SENKIN: a fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis,” Sandia Report SAND87-8248, 1994.
[49]  C. J. Mueller, “The quantification of mixture stoichiometry when fuel molecules contain oxidizer elements or oxidizer molecules contain fuel elements,” SAE Paper 2005-01-3705, 2005.
[50]  S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, and F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chemical Physics Letters, vol. 277, no. 5-6, pp. 423–429, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133