全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

DOI: 10.1155/2010/740962

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline. 1. Introduction Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. In view of the carbon dioxide reduction target agreed upon in the Kyoto protocol, a shift from fossil fuels to renewable resources is ongoing, also to secure the long-term energy supply at both national and international level. The European Commission demonstrated in 2007 that a 20% target for the overall share of energy from renewable sources and a 10% target for energy from renewable sources in transport would be appropriate and achievable objectives [1], though both targets have become subject of dispute since then. In the near term, liquid biofuels will still largely contribute to the target in transport sector due to the limited available technologies for fuels from other renewable sources. Especially bioethanol with its biorenewable nature, optimized production technology, and potential of greenhouse gas (GHG) mitigation already proved itself as an attractive alternative fuel. Most of the current practice only concerns first-generation ethanol from conventional crops like corn, wheat, sorghum, potato, sugarcane, sugar beet, and so forth. Criticism is expressed on the first-generation bioethanol with regard to land use requirement and competition with food and nature. These issues have become the driving forces for the technology innovation towards

References

[1]  “Renewable Energy Road Map—Renewable energies in the 21st century,” building a more sustainable future. 2007. COM, 848 final, 2006.
[2]  “Directive 2009/28/EC of the European Parliament and of the Council,” 2009.
[3]  DOE/EIA-0383, Annual Energy Outlook 2008 with Projections to 2030, U.S. Energy Information Administration, Washington, DC, USA, 2008.
[4]  A. Lavigne and S. E. Powers, “Evaluating fuel ethanol feedstocks from energy policy perspectives: a comparative energy assessment of corn and corn stover,” Energy Policy, vol. 35, no. 11, pp. 5918–5930, 2007.
[5]  L. Luo, E. van der Voet, and G. Huppes, “An energy analysis of ethanol from cellulosic feedstock-Corn stover,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 2003–2011, 2009.
[6]  A. E. Farrell, R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, and D. M. Kammen, “Ethanol can contribute to energy and environmental goals,” Science, vol. 311, no. 5760, pp. 506–508, 2006.
[7]  D. Pimentel and T. W. Patzek, “Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower,” Natural Resources Research, vol. 14, no. 1, pp. 65–76, 2005.
[8]  M. Wang, “Developing and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies,” Tech. Rep. ANL/ESD/TM-163, Argonne National Laboratory, Argonne, Ill, USA, 2001.
[9]  M. Wu, Y. Wu, and M. Wang, “Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment,” Biotechnology Progress, vol. 22, no. 4, pp. 1012–1024, 2006.
[10]  C. A. Cardona Alzate and O. J. Sánchez Toro, “Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass,” Energy, vol. 31, no. 13, pp. 2447–2459, 2006.
[11]  S. Kim, B. E. Dale, and R. Jenkins, “Life cycle assessment of corn grain and corn stover in the United States,” International Journal of Life Cycle Assessment, vol. 14, no. 2, pp. 160–174, 2009.
[12]  L. Luo, E. van der Voet, G. Huppes, and H. A. Udo de Haes, “Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol,” International Journal of Life Cycle Assessment, vol. 14, no. 6, pp. 529–539, 2009.
[13]  E. Searcy and P. C. Flynn, “Processing of straw/corn stover: comparison of life cycle emissions,” International Journal of Green Energy, vol. 5, no. 6, pp. 423–437, 2008.
[14]  J. Sheehan, A. Aden, K. Paustian, et al., “Energy and environmental aspects of using corn stover for fuel ethanol,” Journal of Industrial Ecology, vol. 7, no. 3-4, pp. 117–146, 2004.
[15]  S. Spatari, Y. Zhang, and H. L. Maclean, “Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles,” Environmental Science and Technology, vol. 39, no. 24, pp. 9750–9758, 2005.
[16]  D. Styles and M. B. Jones, “Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland,” Environmental Science and Policy, vol. 11, no. 4, pp. 294–306, 2008.
[17]  T. Botha and H. von Blottnitz, “A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis,” Energy Policy, vol. 34, no. 17, pp. 2654–2661, 2006.
[18]  L. Luo, E. van der Voet, and G. Huppes, “Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6-7, pp. 1613–1619, 2009.
[19]  B. Gabrielle and N. Gagnaire, “Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling,” Biomass and Bioenergy, vol. 32, no. 5, pp. 431–441, 2008.
[20]  T. Beer and T. Grant, “Life-cycle analysis of emissions from fuel ethanol and blends in Australian heavy and light vehicles,” Journal of Cleaner Production, vol. 15, no. 8-9, pp. 833–837, 2007.
[21]  G. Z. Fu, A. W. Chan, and D. E. Minns, “Life cycle assessment of bio-ethanol derived from cellulose,” International Journal of Life Cycle Assessment, vol. 8, no. 3, pp. 137–141, 2003.
[22]  A. J. Kemppainen and D. R. Shonnard, “Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks,” Biotechnology Progress, vol. 21, no. 4, pp. 1075–1084, 2005.
[23]  S. González García, L. Luo, M. T. Moreira, G. Feijoo, and G. Huppes, “Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1922–1933, 2009.
[24]  S. González García, L. Luo, M. T. Moreira, G. Feijoo, and G. Huppes, “Fuel ethanol from hemp hurds: environmental performance,” submitted.
[25]  J. Sheehan, A. Aden, and C. Riley, “Is ethanol from corn stover sustainable? Adventures in cyber-farming: a life cycle assessment of the production of ethanol from corn stover for use in a flex fuel vehicle,” Draft Report for Peer Review, NREL, Golden, Colo, USA, 2002.
[26]  S. Kim and B. E. Dale, “Allocation procedure in ethanol production system from corn grain: I. System expansion,” International Journal of Life Cycle Assessment, vol. 7, no. 4, pp. 237–243, 2002.
[27]  J. Mal?a and F. Freire, “Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation,” Energy, vol. 31, no. 15, pp. 3362–3380, 2006.
[28]  M. E. Dias de Oliveira, B. E. Vaughan, and E. J. Rykiel Jr., “Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint,” BioScience, vol. 55, no. 7, pp. 593–602, 2005.
[29]  M. Graboski, Fossil Energy Use in the Manufacture of Corn Ethanol, National Corn Growers Association, Washington, DC, USA, 2002.
[30]  H. Shapouri and A. McAloon, The 2001 Net Energy Balance of Corn-Ethanol, U.S. Department of Agriculture, Washington, DC, USA, 2002.
[31]  Y. Bai, L. Luo, and E. van der Voet, “Life cycle assessment of switchgrass-derived ethanol as transport fuel,” International Journal of Life Cycle Assessment, vol. 15, pp. 468–477, 2010.
[32]  D. Hadzhiyska, L. Luo, and E. van der Voet, “An energy analysis of ethanol from sugar cane,” CML Report, Leiden, The Netherlands, 2009.
[33]  “Swiss Centre of Life Cycle Inventories,” June 2007, http://www.ecoinvent.org/.
[34]  “Chain Management by Life Cycle Assessment (CMLCA),” May 2007, http://cml.leiden.edu/software/software-cmlca.html.
[35]  “U.S. Life-Cycle Inventory Database,” June 2007, http://www.nrel.gov/lci/.
[36]  I. C. Macedo, M. R. L. V. Leal, and J. E. A. R. da Silva, “Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil,” Report, Government of the State of S?o Paulo and Secretariat of the Environment, S?o Paulo, Brazil, 2004.
[37]  M. Bullard and P. Metcalfe, “Estimating the energy requirement and emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass,” Tech. Rep. ETSU B/U1/00645/REP.
[38]  T. Nemecek and T. K?gi, “Life cycle inventories of Swiss and European agricultural production systems,” Ecoinvent Report 15, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2007.
[39]  T. Nemecek, A. Heil, O. Huguenin, et al., “Life cycle inventories of agricultural production systems,” Ecoinvent Report 15, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2004.
[40]  M. Z. Hauschild, “Estimating pesticide emissions for LCA of agricultural products,” in Agricultural Data for Life Cycle Assessments, B. P. Weidema and M. J. G. Meeusen, Eds., vol. 2, pp. 64–79, LCANet Food, The Hague, The Netherlands, 2000.
[41]  E. Audsley, S. Alber, R. Clift, et al., “Harmonization of environmental life cycle assessment for agriculture,” Concerted Action AIR3-CT94-2028, European Commission. DG VI Agriculture. SRI, Silsoe, UK, 1997.
[42]  D. Arrouays, J. Balesdent, J. C. Germon, P. A. Jayet, J.F. Soussana, and P. Stengel, “Contribution à la lutte contre l'effet de serre. Stocker du carbone dans les sols agricoles de France? Expertise scientifique collective,” Rapport d'expertise réalisé par INRA à la demande du Ministère de l'Ecologie et du Développement Durable, INRA, Paris, France, 2002.
[43]  EMEP/CORINAIR, “Atmospheric emission inventory guidebook,” Tech. Rep. 11, European Environment Agency, Copenhagen, Denmark, 2006.
[44]  M. Spielmann, T. K?gi, P. Stadler, and O. Tietje, “Life cycle inventories of transport services,” Ecoinvent Report 14, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2004.
[45]  A. Aden, M. Ruth, and K. Ibsen, “Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover,” Tech. Rep. NREL/TP-510-32438, 2002.
[46]  ?. Efe, A. J. J. Straathof, and L. A. M. van der Wielen, “Technical and economical feasibility of production of ethanol from sugarcane and sugarcane bagasse,” in B-Basic Internal Report, 2005.
[47]  O. Guerra Miguez, D. Siva Siddarthan, and D. A. Suárez Zuluaga, “Technical and economical feasibility of production of ethanol from switchgrass,” in B-Basic Internal Report, Delft University of Technology, Delft, The Netherlands, 2009.
[48]  A. Tukker, G. Huppes, J. B. Guinée, et al., “Environmental Impact of Products (EIPRO)—Analysis of the life cycle environmental impacts related to the final consumption of the EU-25,” 2005.
[49]  K. J. Kelly, B. K. Bailey, T. C. Coburn, W. Clark, and P. Lissiuk, “Federal test procedure emissions test results from ethanol variable-fuel vehicle Chevrolet Luminas,” in Society for Automotive Engineers, International Spring Fuels and Lubricants Meeting, Dearborn, Mich, USA, 1996.
[50]  A. H. Reading, J. O. W. Norris, E. A. Feest, and E. L. Payne, “Ethanol emissions testing,” AEAT unclassified E&E/DDSE/02/021, Issue 3, 2002.
[51]  ISO Norm 14040, “Life cycle assessment: principles and framework,” Environmental management, 2006.
[52]  ISO Norm 14044, “Life cycle assessment: requirement and guidelines,” Environmental management, 2006.
[53]  G. Huppes, Macro-Environmental Policy: Principles and Design, Elsevier, Amsterdam, The Netherlands, 1993.
[54]  J. B. Guinée, R. Heijungs, and G. Huppes, “Economic allocation: examples and derived decision tree,” International Journal of Life Cycle Assessment, vol. 9, no. 1, pp. 23–33, 2004.
[55]  J. B. Guinée, Ed., Handbook on Life Cycle Assessment—Operational Guide to the ISO Standard, Kluwer Academic Publishers, Dodrecht, The Netherlands, 2002.
[56]  T. W. Patzek, “Thermodynamics of the corn-ethanol biofuel cycle,” Critical Reviews in Plant Sciences, vol. 23, no. 6, pp. 519–567, 2004.
[57]  D. Pimentel and T. Patzek, “Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane,” Natural Resources Research, vol. 16, no. 3, pp. 235–242, 2007.
[58]  A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, “Nitrous oxide ( ): the dominant ozone-depleting substance emitted in the 21st century,” Science, vol. 326, no. 5949, pp. 123–125, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133