%0 Journal Article %T Energy and Environmental Performance of Bioethanol from Different Lignocelluloses %A Lin Luo %A Ester van der Voet %A Gjalt Huppes %J International Journal of Chemical Engineering %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/740962 %X Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline. 1. Introduction Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. In view of the carbon dioxide reduction target agreed upon in the Kyoto protocol, a shift from fossil fuels to renewable resources is ongoing, also to secure the long-term energy supply at both national and international level. The European Commission demonstrated in 2007 that a 20% target for the overall share of energy from renewable sources and a 10% target for energy from renewable sources in transport would be appropriate and achievable objectives [1], though both targets have become subject of dispute since then. In the near term, liquid biofuels will still largely contribute to the target in transport sector due to the limited available technologies for fuels from other renewable sources. Especially bioethanol with its biorenewable nature, optimized production technology, and potential of greenhouse gas (GHG) mitigation already proved itself as an attractive alternative fuel. Most of the current practice only concerns first-generation ethanol from conventional crops like corn, wheat, sorghum, potato, sugarcane, sugar beet, and so forth. Criticism is expressed on the first-generation bioethanol with regard to land use requirement and competition with food and nature. These issues have become the driving forces for the technology innovation towards %U http://www.hindawi.com/journals/ijce/2010/740962/