全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physico-Chemical and Thermal Characterization of Some Lignocellulosic Fibres: Ananas comosus (AC), Neuropeltis acuminatas (NA) and Rhecktophyllum camerunense (RC)

DOI: 10.4236/jmmce.2020.84014, PP. 205-222

Keywords: Lignocellulosic Fibre, Rhecktophyllum camerunense, Neuropeltis acuminatas, Ananas comosus, Biochemical Composition, Cellulose Crystallinity Index, Thermal Behaviour

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper focuses on the study of the physical, biochemical, structural, and thermal properties of plant fibres of Rhecktophyllum camerunense (RC), Neuropeltis acuminatas (NA) and Ananas comosus (AC) from the equatorial region of Cameroon. The traditional use of these fibres inspired researchers to investigated their properties. This study aims at improving the state of knowledge with a view to diversifying applications. The fibres are extracted by retting. Then, their apparent density was measured following the ASTM D792 standard and their water moisture absorption and moisture content were also evaluated. Their molecular structure was studied by ATR-FTIR spectroscopy. A quantitative analysis of the biochemical composition was performed according to the analytical technique for the pulp and paper industry (TAPPI). A TGA/DSC analysis was also performed. The results reveal that the AC, NA and RC fibres have densities of 1.26 ± 1.06, 0.846 ± 0.13 and 0.757 ± 0.08 g·cm-3 respectively. They are also hydrophilic with a water absorption rate of 188.64 ± 11.94%, 276.16% ± 8.07% and 198.17% ± 20%. They have a moisture content of 12.21%, 10.36% and 9.37%. The studied fibres exhibit functional groups that are related to the presence of hemicellulose, pectin, lignin and cellulose. The cellulose crystallinity index was found to be 67.99%, 46.5% and 59.72% respectively. The fibres under study have the following chemical composition: an extractive content of 3.07%, 14.77% and 8.74%; a pectin content of 4.15%, 7.69% and 3.45%; a hemicellulose content of 4.90%, 15.33% and 7.42%; a cellulose content of 68.11%, 36.08% and 65.15%; a lignin content of 12.01%, 25.15% and 16.2%; and an ash content of 0.27%, 1.53% and 0.47% respectively. The thermal transitions observed on the thermograms correlate with the TAPPI chemical composition. It is observed that these fibres are thermally stable up to temperatures of 200°C, 220°C and 285°C. These results make it possible to envisage uses similar to those of sisal, hemp and flax fibres.

References

[1]  Ntenga, R. (2007) Modélisation Multi-échelle et Caractérisation de l’Anisotropie Elastique de Fibres Végétales pour le Renforcement de Matériaux Composites. PhD Thesis, Blaise Pascal Clermont-Ferrand II University/University of Yaoundé I, Yaoundé.
[2]  Baley, C. (2004) Fibres Naturelles de Renfort pour Matériaux Composites. Techniques de l’Ingénieur, AM 5130.
[3]  Page, J. (2017) Formulation et Caractérisation d’un Composite Cimentaire Biofibré pour des Procédés de Construction Préfabriquée. Ph.D. Thesis, Normandy University, Normandy.
[4]  Betene, E.F. (2012) étude des Propriétés Mécaniques et Thermiques du Platre Renforcé de Fibres Végétales Tropicales. Ph.D. Thesis, Blaise Pascal Clermont-Ferrand II University/University of Douala, Douala.
https://doi.org/10.13140/RG.2.2.36627.53284
[5]  Betene, E.F., Nnengue, E.Y.S., Atangana, A.J., Saha, T.J.B., Tcheumani, Y.A.M. and Tawe, L. (2019) Evaluation of Micromechanical Properties of Neuropeltis acuminatas (NA) Fibers. International Journal of Academic Research and Reflection, 7, 23-36.
[6]  Atangana, A., Nnengue, E.S.Y., Betene, E.F., Tawe, L. and Saha, T.J.B. (2019) Morphological and Mechanical Characteristics of Neuropeltis Acuminatas (NA) Fibers. International Journal of Academic Research and Reflection, 7, 22-31.
[7]  Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M.R. and Hoque, M.E. (2015) A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, Article ID: 950567.
https://doi.org/10.1155/2015/950567
[8]  Dumont, P.J.J., Orgéas, L., Martoïa, F., Budtova, T. and Vincent, M. (2017) Article Title. In: Berzin, F., Ed., Composites polymères et fibres lignocellulosiques, Propriétés, transformation et caractérisation, Chapter 5, Lavoisier Hermes, City, 160-201.
[9]  Nadlene, R., Sapuan, S.M., Jawaid, M., Ishak, M.R. and Yusriah, L. (2015) Material Characterization of Roselle Fibre (Hibiscus sabdariffa L.) as Potential Reinforcement Material for Polymer Composites. Fibres and Textiles in Eastern Europe, 6, 23-30.
https://doi.org/10.5604/12303666.1167413
[10]  Baley, C., Le Duigou, A., Bourmaud, A. and Davies, P. (2012) Influence of Drying on the Mechanical Behaviour of Flax Fibres and Their Unidirectional Composites. Composites Part A: Applied Science and Manufacturing, 43, 1226-1233.
https://doi.org/10.1016/j.compositesa.2012.03.005
[11]  Youmssi, D.V.C., Bampel, Y.D.M., Njankouo, J.M., Saha, J.-B. and Ndikontar, M.K. (2017) Chemical Composition of Some Plantation Wood Species (Eucalyptus saligna, Cupressus lusitanica and Eucalyptus paniculata) and Assessment of Compatibility with Plaster. Journal Indian Academy of Wood Science, 14, 146-153.
https://doi.org/10.1007/s13196-017-0200-3
[12]  Sango, T., Yona, A.M.C., Duchatel, L., Marin, A., Ndikontar, M., Joly, N. and Lefebvre, J.M. (2018) Step-Wise Multi-Scale Deconstruction of Banana Pseudo-Stem (Musa acuminata) Biomass and Morpho-Mechanical Characterization of Extracted Long Fibres for Sustainable Applications. Industrial Crops and Products, 122, 657-668.
https://doi.org/10.1016/j.indcrop.2018.06.050
[13]  Parida, C., Dash, S.K. and Pradhan, C. (2015) FTIR and Raman Studies of Cellulose Fibers of Luffa cylindrica. Open Journal of Composite Materials, 5, 5-10.
https://doi.org/10.4236/ojcm.2015.51002
[14]  Béakou, A., Ntenga, R., Lepetit, J., Atéba, J.A. and Ayina, L.O. (2008) Physico-Chemical and Microstructural Characterization of “Rhectophyllum camerunense” Plant Fiber. Composites Part A: Applied Science and Manufacturing, 39, 67-74.
https://doi.org/10.1016/j.compositesa.2007.09.002
[15]  Uddin, N., Miah, S., Abdul, M., Jalil, M.A., Islam, M. and Ayesha, S. (2017) A Review on Extraction, Characterization and Application of Pineapple Leaf Fiber (PALF) in Textiles and Other Fields. International Journal of Advanced Research, 5, 112-116.
https://doi.org/10.21474/IJAR01/3786
[16]  Aizi, D.E. (2017) Extraction, Caractérisation Morphologique, Physico-chimique et Mécanique des Fibres Caulinaires de Retama monosperma L. Boiss. PhD Thesis, Oran Mohamed Boudiaf University of Science and Technology, Algeria.
[17]  Faruk, O., Bledzki, A.K., Fink, H.-P. and Sain, M. (2012) Biocomposites Reinforced with Natural Fibers: 2000-2010. Progress in Polymer Science, 37, 1552-1596.
https://doi.org/10.1016/j.progpolymsci.2012.04.003
[18]  Roudier, A., Charlet, K., Moreno, F., Toussaint, E., Géneau-Sbartaï, C., Commereuc, S., Verney, V. and Béakou, A. (2010) Caractérisation des Propriétés Biochimiques et Hygroscopiques d’une Fibre de Lin. Matériaux & Techniques, 100, 525-535.
https://doi.org/10.1051/mattech/2012044
[19]  Noutegomo, B., Betene, E. and Atangana, A. (2019) Study of the Diffusion Behavior of Water Vapor Sorption in Natural Fiber Composite: Plaster/Rhecktophyllum Camerunense. MOJ Applied Bionics and Biomechanics, 3, 1.
https://doi.org/10.15406/mojabb.2019.03.00093
[20]  Elenga, R.G., Dirras, G.F., Goma, M.J., Djema, P. and Biget, M.P. (2009) On the Picrostructure and Physical Properties of Untreated Raffia textilis Fiber. Composites: Part A: Applied Science and Manufacturing, 40, 418-422.
https://doi.org/10.1016/j.compositesa.2009.01.001
[21]  Hachmi, M. and Moslemi, A.A. (1989) Correlation between Wood-Cement Compatibility and Wood Extractives. Forest Products Journal, 39, 55-58.
[22]  Taallah, B., Guettala, A. and Kriker, A. (2014) Effet de la Teneur en Fibres de Palmier Dattier et de la Contrainte de Compactage sur les Propriétés des Blocs de Terre Comprimée. Materials Science, Courrier du Savoir, 18, 45-51.
[23]  Cotugno, S., Larobina, D., Mensitieri, G., Musto, P. and Ragosta, G. (2001) A Novel Spectroscopic Approach to Investigate Transport Processes in Polymers: The Case of Water-Epoxy System. Polymer, 42, 6431-6438.
https://doi.org/10.1016/S0032-3861(01)00096-9
[24]  Mouhoubi, S., Osmani, H., Bali, T. and Abdeslam, S. (2012) élaboration et étude des Propriétés des Composites Polyester/alfa Traitée et Non Traitée. Verres, Céramiques & Composites, 2, 34-40.
[25]  Saad, H. (2013) Développement de Bio-composites à Base de Fibres Végétales et de Colles écologiques. PhD Thesis, University of Pau et des Pays de l’Adour, Pau.
[26]  Bilba, K., Arsene, M.-A. and Ouensanga, A. (2007) Study of Banana and Coconut Fibers Botanical Composition, Thermal Degradation and Textural Observations. Bioresource Technology, 98, 58-68.
https://doi.org/10.1016/j.biortech.2005.11.030
[27]  Bellamy, L.J. (1975) The Infra-Red Spectra of Complex Molecules. Chapman and Hall, London, 111-112.
https://doi.org/10.1007/978-94-011-6017-9
[28]  Ouajai, S. and Shanks, R.A. (2005) Composition, Structure and Thermal Degradation of Hemp Cellulose after Chemical Treatments. Polymer Degradation and Stability, 89, 327-335.
https://doi.org/10.1016/j.polymdegradstab.2005.01.016
[29]  De Rosa, I.M., Kenny, J.M., Puglia, D., Santulli, C. and Sarasini, F. (2010) Morphological, Thermal and Mechanical Characterization of Okra (Abelmoschus esculentus) Fibres as Potential Reinforcement in Polymer Composites. Composites Science and Technology, 70, 116-122.
https://doi.org/10.1016/j.compscitech.2009.09.013
[30]  Fengel, D. (1992) Characterization of Cellulose by Deconvoluting the OH Valency Range in FTIR Spectra. Holzforschung, 46, 283-288.
https://doi.org/10.1515/hfsg.1992.46.4.283
[31]  Kondo, T. (1997) The Assignment of IR Absorption Bands Due to Free Hydroxyl Groups in Cellulose. Cellulose, 4, 281-292.
https://doi.org/10.1023/A:1018448109214
[32]  Dai, D. and Fan, M. (2011) Investigation of the Dislocation of Natural Fibres by Fourier-Transform Infrared Spectroscopy. Vibrational Spectroscopy, 55, 300-306.
https://doi.org/10.1016/j.vibspec.2010.12.009
[33]  Milani, M.D.Y., Samarawickrama, D.S., Dharmasiri, G.P.C.A. and Kottegoda, I.R.M. (2016) Study the Structure, Morphology, and Thermal Behavior of Banana Fiber and Its Charcoal Derivative from Selected Banana Varieties. Journal of Natural Fibers, 13, 332-342.
https://doi.org/10.1080/15440478.2015.1029195
[34]  Ntenga, R., Mfoumou, E., Béakou, A., Tango, M., Kamga, J. and Ahmed, A. (2018) Insight on the Ultrastructure, Physicochemical, Thermal Characteristics and Applications of Palm Kernel Shells. Materials Sciences and Applications, 9, 790-811.
https://doi.org/10.4236/msa.2018.910057
[35]  Deepa, B.E., Abraham, B.M., Cherian, A., Bismarck, J.J., Blaker, L.A., Pothan, A.L., Leao, S.F.D., Souza and Kottaisamy, V. (2011) Structure, Morphology and Thermal Characteristics of Banana Nano Fibers Obtained by Steam Explosion. Bioresource Technology, 102, 1988-1997.
https://doi.org/10.1016/j.biortech.2010.09.030
[36]  Ornaghi Júnior, H.L., Zattera, A.J. and Amico, S.C. (2013) Thermal Behavior and the Compensation Effect of Vegetal Fibers. Cellulose, 21, 189-201.
https://doi.org/10.1007/s10570-013-0126-x
[37]  Teixeira, F.P., Otávio da, F.M.G. and Flávio, A.S. (2019) Degradation Mechanisms of Curaua, Hemp, and Sisal Fibers Exposed to Elevated Temperatures. Thermal Degradation of Fibers, Bioresources, 14, 1494-1511.
[38]  Tanobe, V.O.A., Sydenstricker, T.H.D., Munaro, M. and Amico, S.C. (2005) A Comprehensive Characterization of Chemically Treated Brazilian Sponge-Gourds (Luffa cylindrica). Polymer Testing, 24, 474-482.
https://doi.org/10.1016/j.polymertesting.2004.12.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133