Understanding the nature of cell surface markers on exfoliated colonic cells is a crucial step in establishing criteria for a normally functioning mucosa. We have found that colonic cells isolated from stool samples (SCSR-010 Fecal Cell Isolation Kit, NonInvasive Technologies, Elkridge, MD), preserved at room temperature for up to one week, with viability of >85% and low levels of apoptosis (8% - 10%) exhibit two distinct cell size subpopulations, in the 2.5 μM - 5.0 μM and 5.0 μM - 8.0 μM range. In addition to IgA, about 60% of the cells expressed a novel heterodimeric IgA/IgG immunoglobulin that conferred a broad-spectrum cell mediated cytotoxicity against tumor cells. In a cohort of 58 subjects the exclusive absence of this immunoglobulin in two African-Americans was suggestive of a germline deletion. Serial cultures in stem cell medium retained the expression of this heterodimer. Since a majority of the cystic cells expressed the stem cell markers Lgr5 and Musashi-1 we termed these cells as gastrointestinal progenitor stem cells (GIP-C**). CXCR-4, the cytokine co-receptor for HIV was markedly expressed. These cells also expressed CD20, IgA, IgG, CD45, and COX-2. We assume that they originated from mature columnar epithelium by dedifferentiation. Our observations indicate that we have a robust noninvasive method to study mucosal pathophysiology and a direct method to create a database for applications in regenerative medicine.
References
[1]
Leblond, C.P. and Stevens, C.E. (1948) The Constant Renewal of the Intestinal Epithelium in the Albino Rat. The Anatomical Record, 100, 357-377. https://doi.org/10.1002/ar.1091000306
[2]
Lipkin, M. and Quastler, H. (1962) Cell Population Kinetics in the Colon of the Mouse. Journal of Clinical Investigation, 41, 141-146. https://doi.org/10.1172/JCI104456
[3]
Lipkin, M., Bell, B. and Sherlock, P. (1963) Cell Proliferation Kinetics in the Gastrointestinal Tract of Man. I. Cell Renewal in the Colon and Rectum. Journal of Clinical Investigation, 42, 767-776. https://doi.org/10.1172/JCI104769
[4]
Lipkin, M., Sherlock, P. and Bell, B. (1963) Cell Proliferation Kinetics in the Gastrointestinal Tract of Man. II. Cell Renewal in Stomach, Ileum, Colon, and Rectum. Gastroenterology, 45, 721-729. https://doi.org/10.1016/S0016-5085(19)34805-X
[5]
Cario, E. (2013) Microbiota and Innate Immunity in Intestinal Inflammation and Neoplasia. Current Opinion in Gastroenterology, 29, 85-91. https://doi.org/10.1097/MOG.0b013e32835a670e
[6]
Lepage, P., Hasler, R., Spehlmann, M.E., Rehman, A., Zvirbliene, A., Begun, A., Ott, S., Kupcinskas, L., Dore, J., Raedler, A. and Schreiber, S. (2011) Twin Study Indicates Loss of Interaction between Microbiota and Mucosa of Patients with Ulcerative Colitis. Gastroenterology, 141, 227-236. https://doi.org/10.1053/j.gastro.2011.04.011
[7]
King, C.E. and Toskes, P.P. (1979) Small Intestine Bacterial Overgrowth. Gastroenterology, 76, 1035-1055. https://doi.org/10.1016/S0016-5085(79)91337-4
[8]
Hall, P., Coates, P.J. and Ansari, B. (1994) Regulation of Cell Number in the Mammalian Gastrointestinal Tract: The Importance of Apoptosis. Journal of Cell Science, 107, 3565-3577.
[9]
Potten, C.S., Wilson, J.W. and Booth, C. (1997) Regulation and Significance of Apoptosis in the Stem Cells of the Gastrointestinal Epithelium. Stem Cells, 15, 82-93. https://doi.org/10.1002/stem.150082
[10]
Snippert, H.J., van der Flier, L.G., Sato, T., van Es, J.H., van den Born, M., Kroon-Veeboer, C., Barker, N., Klein, A.M., van Rheenen, J., Simons, B.D. and Clevers, H. (2010) Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells. Cell, 143, 134-144. https://doi.org/10.1016/j.cell.2010.09.016
[11]
Iyengar, V., Albaugh, G.P., Lohani, A. and Nair, P.P. (1991) Human Stool as a Source of Viable Colonic Epithelial Cells. The FASEB Journal, 5, 2856-2859. https://doi.org/10.1096/fasebj.5.13.1655550
[12]
Albaugh, G.P., Iyengar, V., Lohani, A., Malayeri, M., Bala, S. and Nair, P.P. (1992) Isolation of Exfoliated Colonic Epithelial Cells: A Novel Non-Invasive Approach to the Study of Cellular Markers. International Journal of Cancer, 52, 347-350. https://doi.org/10.1002/ijc.2910520303
[13]
Nair, P.P., Lagerholm, S., Dutta, S., Shami, S., Davis, K., Ma, S. and Malayeri, M. (2003) Coprocytobiology: On the Nature of Cellular Elements from Stools in the Pathophysiology of Colonic Disease. Journal of Clinical Gastroenterology, 36, S84-S93. https://doi.org/10.1097/00004836-200305001-00015
[14]
Dutta, S.K. and Nair, P.P. (1998) Noninvasive Detection of Colorectal Cancer by Molecular Tools: Coming of Age. Gastroenterology, 114, 333-1335. https://doi.org/10.1016/S0016-5085(98)70442-1
[15]
Desilets, D.J., Davis, K.E., Nair, P.P., Salata, K.F., Maydonovitch, C.I., Howard, R.S., Kikendal, J.W. and Wong, R.K.H. (1999) Lectin Binding to Human Colonocytes Is Predictive of Colonic Neoplasia. The American Journal of Gastroenterology, 94, 744-750. https://doi.org/10.1111/j.1572-0241.1999.00946.x
[16]
Lagerholm, S., Lagerholm, S., Dutta, S.K. and Nair, P.P. (2005) Noninvasive Detection of c-myc p64, c-myc p67, and c-erbb-2 in Colorectal Cancer. Scandinavian Journal of Gastroenterology, 40, 1343-1350. https://doi.org/10.1080/00365520510023549
[17]
Kamra, A., Kessie, G., Chen, J.-H., Kalavapudi, S., Shores, R., McElroy, I., Gireesh, T., Sudhakaran, P.R., Dutta, S.K. and Nair, P.P. (2005) Exfoliated Colonic Epithelial Cells: Surrogate Targets for Evaluation of Bioactive Food Components in Cancer Prevention. The Journal of Nutrition, 135, 2719-2722. https://doi.org/10.1093/jn/135.11.2719
[18]
Nair, P.P., Kamra, A., Kessie, G., Kalavapudi, S., Chen, J.-H., Shores, R., Madieros, L., Fasano, A. and Nair, P. (2011) Markers of Inflammation and Lineage on Exfoliated Colonic Cells in Pediatric IBD. Journal of Gastrointestinal and Digestive System, 8, 1-6.
[19]
Malayeri, M., Albaugh, G., Davis, D., Bhathena, S.J. and Nair, P.P. (1997) Exfoliated Human Colonic Epithelial Cells: Insulin Binding and Molecular Cloning of the Insulin Receptor. Medical Science Research, 25, 801-803.
[20]
Chandel, D.S., Braileanu, G.T., Chen, J.-H., Chen, H.H. and Panigrahi, P. (2011) Live Colonocytes in Newborn Stool: Surrogates for Evaluation of Gut Physiology and Disease Pathogenesis. Pediatric Research, 70, 153-158. https://doi.org/10.1203/PDR.0b013e3182225ac9
[21]
Leavell, B.J., Van Buren, E., Antaki, F., Axelrod, B.N., Rambus, M.A. and Majumdar, P.N. (2012) Associations between Markers of Colorectal Cancer Stem Cells and Adenomas among Ethnic Groups. Digestive Diseases and Sciences, 57, 2334-2339. https://doi.org/10.1007/s10620-012-2195-3
[22]
Laurin, E.L., McKenna, S.L.B., Sanchez, J., Bach, H., Rodriguez-Lecompte, J.C., Chaffer, M. and Keefe, G.P. (2015) Novel Cell Preservation Technique to Extend Bovine in Vitro White Blood Cell Viability. PLoS ONE, 10, e0140046. https://doi.org/10.1371/journal.pone.0140046
[23]
Nair, P.P. (2005) Immunocoprocytes: Co-Expression of IgA/IgG in a Chimeric Immunoglobulin (IgC) in a Sub-Population of Exfoliated Colonocytes. US Patent 6,881,574.
[24]
Vermes, I., Haanen, C., Steffens-Nakken, H. and Reutelingsperger, C. (1995) A Novel Assay for Apoptosis: Flow Cytometric Detection of Phosphatidylserine Expression on Early Apoptotic Cells Using Fluorescein Labelled Annexin V. Journal of Immunological Methods, 184, 39-51. https://doi.org/10.1016/0022-1759(95)00072-I
[25]
Goldenberg, D.M., Pegram, C.A. and Vazquez, J.J. (1975) Identification of a Colon-Specific Antigen (CSA) in Normal and Neoplastic Tissues. The Journal of Immunology, 114, 1008-1013.
[26]
Gold, D.V., Ishizaki, G. and Shochet, D. (1986) Organ Specific Antigens of the Human Gastrointestinal Tract. Molecular Immunology, 23, 1031-1037. https://doi.org/10.1016/0161-5890(86)90001-5
[27]
Snook, A.E., Magee, M.S., Marszalowicz, G.P., Schulz, S. and Waldmann, S.A. (2012) Cytotoxic T Cells Mediate Epitope-Targeted Lineage-Specific Antitumor Efficacy Induced by Cancer Mucosa Antigen, GUCY2C. Cancer Immunology, Immunotherapy, 61, 713-723. https://doi.org/10.1007/s00262-011-1133-0
[28]
D’Acquisto, F. and Crompton, T. (2011) CD3+CD4-CD8-(Double Negative) T Cells: Saviours or Villains of the Immune Response? Biochemical Pharmacology, 82, 333-340. https://doi.org/10.1016/j.bcp.2011.05.019
[29]
Gogoi, D. and Chiplunkar, S.V. (2013) Targeting Gamma Delta T Cells for Cancer Immunotherapy: Bench to Bedside. Indian Journal of Medical Research, 138, 755-761.
[30]
Wesch, D., Peters, C. and Siegers, G.M. (2014) Human Gamma Delta T Regulatory Cells in Cancer: Fact or Fiction. Frontiers in Immunology, 5, 598. https://doi.org/10.3389/fimmu.2014.00598
[31]
Lafont, V., Sanchez, F., Laprevotte, E., Michaud, H.A., Gros, L., Ellaou, J.F. and Bonnefoy, N. (2014) Plasticity of Gamma-Delta T Cells: Impact on the Anti-Tumor Response. Frontiers in Immunology, 5, 622. https://doi.org/10.3389/fimmu.2014.00622
[32]
Moyer, M.P. (1983) Culture of Human Gastrointestinal Epithelial Cells. Proceedings of the Society for Experimental Biology and Medicine, 174, 12-15. https://doi.org/10.3181/00379727-174-1-RC1
[33]
Culling, C.F.A., Reid, P.E., Trueman, L.S. and Dunn, W.L. (1973) A Simple Method for the Isolation of Viable Epithelial Cells of the Gastrointestinal Tract. Proceedings of the Society for Experimental Biology and Medicine, 142, 434-438. https://doi.org/10.3181/00379727-142-37040
[34]
Quaroni, A. and May, R.J. (1980) Establishment and Characterization of Intestinal Epithelial Cell Cultures. Methods in Cell Biology, 21, 403-427. https://doi.org/10.1016/S0091-679X(08)60695-0
[35]
Booth, C., Patel, S., Bennion, G.R. and Potten, C.S. (1995) The Isolation and Culture of Adult Mouse Colonic Epithelium. Epithelial Cell Biology, 4, 76-86.
[36]
Talchai, C., Xuan, S., Lin, H.V., Sussel, L. and Accili, D. (2012) Pancreatic ß Cell Dedifferentiation as a Mechanism of Diabetic ß Cell Failure. Cell, 150, 1223-1234. https://doi.org/10.1016/j.cell.2012.07.029
[37]
Landsberg, J., Kohlmeyer, J., Renn, M., Bald, T., Rogava, M., Cron, M., Fatho, M., Lennerz, V., Wolfel, T., Holzel, M. and Tuting, T. (2012) Melanomas Resist T-Cell Therapy through Inflammation-Induced Reversible Dedifferentiation. Nature, 490, 412-416. https://doi.org/10.1038/nature11538
[38]
Friedmann-Morvinski, D., Bushong, E.A., Ke, E., Soda, Y., Marumoto, T., Singer, O., Ellisman, M.H. and Verma, I.M. (2012) Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice. Science, 338, 1080-1084. https://doi.org/10.1126/science.1226929
[39]
Zhang, Y., Li, T.S., Lee, S.T., Wawrowsky, K.A., Cheng, K., Galang, G., Malliaras, K., Abraham, M.R., Wang, C. and Marban, E. (2010) Dedifferentiation and Proliferation of Mammalian Cardiomyocytes. PLoS ONE, 5, e12559. https://doi.org/10.1371/journal.pone.0012559
[40]
Chen, S., Zhang, Q., Wu, X., Schultz, P.G. and Dings, S. (2004) Dedifferentiation of Lineage-Committed Cells by a Small Molecule. Journal of the American Chemical Society, 126, 410-411. https://doi.org/10.1021/ja037390k
Vacanti, M.P., Roy, A., Cortiella, J., Bonassar, L. and Vacanti, C.A. (2001) Identification and Initial Characterization of Spore-Like Cells in Adult Mammals. Journal of Cellular Biochemistry, 80, 455-460. https://doi.org/10.1002/1097-4644(20010301)80:3<455::AID-JCB180>3.0.CO;2-Z
[43]
Shmilovici, A. (2007) Mammalian Spore-Like Cells—A Reservoir of Spare Parts for Old-Age? Medical Hypotheses, 68, 767-769. https://doi.org/10.1016/j.mehy.2006.08.044
[44]
Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J. and Clevers, H. (2007) Identification of Stem Cells in Small Intestine and Colon by Marker Gene Lgr5. Nature, 449, 1003-1007. https://doi.org/10.1038/nature06196
[45]
Potten, C.S., Booth, C., Tudor, G.L., Booth, D., Brady, G., Hurley, P., Ashton, G., Clarke, R., Sakakibara, S. and Okano, H. (2003) Identification of a Putative Intestinal Stem Cell and Early Lineage Marker: Musashi-1. Differentiation, 71, 28-41. https://doi.org/10.1046/j.1432-0436.2003.700603.x
[46]
Ho, S.B. (1992) Cytoskeleton and Other Differentiation Markers in the Colon. Journal of Cellular Biochemistry, 16, 119-128. https://doi.org/10.1002/jcb.240501121
[47]
Hsu, C.C.S. (1984) Co-Expression of Multiple Immunoglobulin Isotypes in Human B-Lymphocytes. Immunological Communications, 13, 403-418. https://doi.org/10.3109/08820138409033887
[48]
Trosko, J.E. (2007) Gap Junctional Intercellular Communication as a Biological “Rosetta Stone” in Understanding, in a Systems Biological Manner, Stem Cell Behaviour, Mechanisms of Epigenetic Toxicology, Chemoprevention and Chemotherapy. The Journal of Membrane Biology, 218, 93-100. https://doi.org/10.1007/s00232-007-9072-6
[49]
Schnabel, M., Marlovits, S., Eckhoff, G., Fitchtell, I., Gotzen, L., Vecsei, V. and Schlegel, J. (2002) De-Differentiation-Associated Changes in Morphology and Gene Expression in Primary Human Articular Chondrocytes in Cell Culture. Osteoarthritis and Cartilage, 10, 62-70. https://doi.org/10.1053/joca.2001.0482
[50]
Sato, T. and Clevers, H. (2013) Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications. Science, 340, 1190-1194. https://doi.org/10.1126/science.1234852
[51]
Metzger, M., Caldwell, C., Barlow, A.J., Burns, A.J. and Thapar, N. (2009) Enteric Nervous System Stem Cells Derived from Human Gut Mucosa for the Treatment of Aganglionic Gut Disorders. Gastroenterology, 316, 2214-2225. https://doi.org/10.1053/j.gastro.2009.02.048
[52]
Becker, L. and Mashimo, H. (2009) Further Promise of Stem Cells Therapies in the Enteric Nervous System. Gastroenterology, 136, 2055-2058. https://doi.org/10.1053/j.gastro.2009.04.022
[53]
Micci, M.A. and Pasricha, P.J. (2007) Neural Stem Cells for the Treatment of Disorders of the Enteric Nervous System: Strategies and Challenges. Developmental Dynamics, 236, 33-43. https://doi.org/10.1002/dvdy.20975
[54]
Van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E.G., de Vos, W.M., Visser, C.E., Kuijper, E.J., Bartelsman, J.F., Tijssen, J.G., Speelman, P., Dijkgraaf, M.G. and Keller, J.J. (2013) Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. The New England Journal of Medicine, 368, 407-415. https://doi.org/10.1056/NEJMoa1205037
[55]
Moudgal, V. and Sobel, J.D. (2012) Clostridium difficile Colitis: A Review. Hospital Practice, 40, 139-148. https://doi.org/10.3810/hp.2012.02.954
[56]
Bakken, J.S., Borody, T., Brandt, L.J., Brill, J.V., Demarco, D.C., Franzos, M.A., Kelly, C., Khoruts, A., Louie, T., Martinelli, L.P., Moore, T.A., Russell, G. and Sarawicz, C. (2011) Treating Clostridium difficile Infection with Fecal Microbiota Transplantation. Clinical Gastroenterology and Hepatology, 9, 1044-1049. https://doi.org/10.1016/j.cgh.2011.08.014
[57]
Vrieze, A., et al. (2012) Transfer of Intestinal Microbiota from Lean Donors Increases Insulin Sensitivity in Individuals with Metabolic Syndrome. Gastroenterology, 143, 913-916. https://doi.org/10.1053/j.gastro.2012.06.031
[58]
Cani, P.D., Possemiers, S., Van der Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D.M., Muccioli, G.G. and Delzenne, N.M. (2009) Changes in Gut Microbiota Control Inflammation in Obese Mice through a Mechanism Involving GLP2-Driven Improvement of Gut Permeability. Gut, 58, 1091-1103. https://doi.org/10.1136/gut.2008.165886