全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有抗癌活性的金属配合物的量子化学研究进展
Recent Research Progress on the Quantum Chemistry Study of Metal Complexes with Anticancer Activity

DOI: 10.12677/HJMCe.2020.82002, PP. 7-13

Keywords: 金属配合物,抗肿瘤,铂类药物,量子化学计算
Metal Complexes
, Anticancer, Platinum Drugs, Quantum Chemical Calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

将量子化学原理及方法引入药物设计研究领域,从更高的理论起点来认识药物分子在微观尺度上的电子结构和各种量子化学参数,将对药物研发具有着重要的意义。本文简要介绍了量子化学计算在传统铂类抗癌药物以及新型抗癌金属配合物研究中的应用研究进展,为相关抗癌配合物的研发提供理论参考。
Introducing quantum chemistry calculation into the research field of drug design will provide a microscale understanding on the electronic structure and quantum chemistry parameters on the drug molecules from a higher theoretical starting point, which will be of great significance to the development of new drugs. This paper briefly reviewed the application of quantum chemical calculations in the study of traditional platinum drugs and some other new anticancer metal complexes to offer theoretical references for the further development on antitumor complexes in the future.

References

[1]  Kazuyuki, S., Motoyuki, I. and Yoriko, T. (2013) Reductive Aldol-Type Reaction of α,β-Unsaturated Esters with Aldehydes or Ketones in the Presence of Rh Catalyst and Et2Zn. Tetrahedron Letters, 54, 5913-5915.
https://doi.org/10.1016/j.tetlet.2013.08.109
[2]  Banerjee, R., Phan, A. and Wang, B. (2008) High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 319, 939-943.
https://doi.org/10.1126/science.1152516
[3]  Sardesai, N.Y., Zimmermann, K. and Barton, J.K. (1994) DNA Recognition by Peptide Complexes of Rhodium (III): Example of a Glutamate Switch. Journal of the American Chemical Society, 116, 7502-7508.
https://doi.org/10.1021/ja00096a005
[4]  Lin, R.B., Li, F., Liu, S.Y., Qi, X.L. and Zhang, J.P. (2013) A Noble-Metal-Free Porous Coordination Framework with Exceptional Sensing Efficiency for Oxygen. Angewandte Chemie International Edition, 52, 13429-13433.
https://doi.org/10.1002/anie.201307217
[5]  Saeed, S., Rashid, N., Jones, P.G., Ali, M. and Hussain, R. (2010) Synthesis, Characterization and Biological Evaluation of Some Thiourea Derivatives Bearing Benzothiazole Moiety as Potential Antimicrobial and Anticancer Agents. European Journal of Medicinal Chemistry, 45, 1323-1331.
https://doi.org/10.1016/j.ejmech.2009.12.016
[6]  Liang, J.-X., et al. (2017) Recent Development of Transition Metal Complexes with in Vivo Antitumor Activity. Journal of Inorganic Biochemistry, 177, 276-286.
https://doi.org/10.1016/j.jinorgbio.2017.06.002
[7]  Sun, R., et al. (2011) Luminescent Cyclometalated Platinum (II) Complexes Containing N-Heterocyclic Carbene Ligands with Potent in Vitro and in Vivo Anti-Cancer Properties Accumulate in Cytoplasmic Structures of Cancer Cells. Chemical Science, 2, 728-736.
https://doi.org/10.1039/c0sc00593b
[8]  Frik, M., et al. (2014) In Vitro and in Vivo Evaluation of Water-Soluble Iminophosphorane Ruthenium (II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer. Journal of Medicinal Chemistry, 57, 9995-10012.
https://doi.org/10.1021/jm5012337
[9]  Yang, C., et al. (2016) Discovery of a VHL and HIF1α Interaction Inhibitor with in Vivo Angiogenic Activity via Structure-Based Virtual Screening. Chemical Communications, 52, 12837-12840.
https://doi.org/10.1039/C6CC04938A
[10]  Lum, C.T., et al. (2014) Gold (III) Complexes Inhibit Growth of Cisplatin-Resistant Ovarian Cancer in Association with Upregulation of Proapoptotic PMS2 Gene. Chemical Science, 5, 1579-1584.
https://doi.org/10.1039/c3sc53203h
[11]  Gramatica, P. (2007) Principles of QSAR Models Validation: Internal and External. QSAR & Combinatorial Science, 26, 694-701.
https://doi.org/10.1002/qsar.200610151
[12]  Lau, J. and Ensing, B. (2010) Hydrolysis of Cisplatin—A First-Principles Metadynamics Study. Physical Chemistry Chemical Physics, 35, 10348-10355.
https://doi.org/10.1039/b918301a
[13]  Lau, J.K.C. and Deubel, D.V. (2006) Hydrolysis of the Anticancer Drug Cisplatin: Pitfalls in the Interpretation of Quantum Chemical Calculations. Journal of Chemical Theory and Computation, 2, 103-106.
https://doi.org/10.1021/ct050229a
[14]  Tai, T.B. and Nhat, P.V. (2017) A DFT Investigation on Interactions between Asymmetric Derivatives of Cisplatin and Nucleobase Guanine. Chemical Physics Letters, 680, 44-50.
https://doi.org/10.1016/j.cplett.2017.05.028
[15]  Graziani, V., Coletti, C., Marrone, A. and Re, N. (2016) Activation and Reactivity of a Bispidine Analogue of Cisplatin: A Theoretical Investigation. The Journal of Physical Chemistry A, 120, 5175-5186.
https://doi.org/10.1021/acs.jpca.6b00844
[16]  Baik, M.H., Friesner, R.A. and Lippard, S.J. (2003) Theoretical Study of Cisplatin Binding to Purine Bases: Why Does Cisplatin Prefer Guanine over Adenine? Journal of the American Chemical Society, 125, 14082-14092.
https://doi.org/10.1021/ja036960d
[17]  Alberto, M.E., Lucas, M.F.A., Pavelka, M. and Russo, N. (2009) The Second-Generation Anticancer Drug Nedaplatin: A Theoretical Investigation on the Hydrolysis Mechanism. The Journal of Physical Chemistry B, 113, 14473-14479.
https://doi.org/10.1021/jp9056835
[18]  Pavelka, M., Lucas, M.F.A. and Russo, N. (2007) On the Hydrolysis Mechanism of the Second-Generation Anticancer Drug Carboplatin. Chemistry—A European Journal, 13, 10108-10116.
https://doi.org/10.1002/chem.200700887
[19]  Kuduk-Jaworska, J., Jański, J.J. and Roszak, S. (2017) Comparative Study of Hydrolytic and Electron-Driven Processes in Carboplatin Biotransformation. Journal of Inorganic Biochemistry, 170, 148-159.
https://doi.org/10.1016/j.jinorgbio.2017.02.003
[20]  Rezazadeh, M., Ghiasi, R. and Jamehbozorgi, S. (2018) Solvent Effects on the Structure and Spectroscopic Properties of the Second-Generation Anticancer Drug Carboplatin: A Theoretical Insight. Journal of Structural Chemistry, 59, 245-251.
https://doi.org/10.1134/S0022476618010390
[21]  Lucas, M.F.A., Pavelka, M., Alberto, M.E. and Russo, N. (2008) Neutral and Acidic Hydrolysis Reactions of the Third Generation Anticancer Drug Oxaliplatin. The Journal of Physical Chemistry B, 113, 831-838.
https://doi.org/10.1021/jp8086539
[22]  Cerón-Carrasco, J.P., Cerezo, J. and Requena, A. (2014) Labelling Herceptin with a Novel Oxaliplatin Derivative: A Computational Approach towards the Selective Drug Delivery. Journal of Molecular Modeling, 20, 2401.
https://doi.org/10.1007/s00894-014-2401-7
[23]  Mutter, S.T. and Platts, J.A. (2011) Density Functional Theory Studies of Interactions of Ruthenium-Arene Complexes with Base Pair Steps. The Journal of Physical Chemistry A, 115, 11293-11302.
https://doi.org/10.1021/jp2049487
[24]  Chen, J.C., Chen, L.M., Xu, L.C., Zheng, K.C. and Ji, L.N. (2008) Binding to DNA Purine Base and Structure—Activity Relationship of a Series of Structurally Related Ru (II) Antitumor Complexes: A Theoretical Study. The Journal of Physical Chemistry B, 112, 9966-9974.
https://doi.org/10.1021/jp711799g
[25]  Mir, J.M., Jain, N., Jaget, P.S. and Maurya, R.C. (2017) Density Functionalized [RuII (NO)(Salen)(Cl)] Complex: Computational Photodynamics and in Vitro Anticancer Facets. Photodiagnosis and Photodynamic Therapy, 19, 363-374.
https://doi.org/10.1016/j.pdpdt.2017.07.006
[26]  Chen, J., Chen, L., Liao, S. and Zheng, K. (2007) A Theoretical Study on the Hydrolysis Process of the Antimetastatic Ruthenium (III) Complex NAMI-A. The Journal of Physical Chemistry B, 111, 7862-7869.
https://doi.org/10.1021/jp0711794
[27]  Alvarado-Soto, L. and Ramirez-Tagle, R. (2015) A Theoretical Study of the Binding of [Re6Se8(OH)2(H2O)4] Rhenium Clusters to DNA Purine Base Guanine. Materials, 8, 3938-3944.
https://doi.org/10.3390/ma8073938
[28]  Sayin, K. and üng?rdü, A. (2018) Investigation of Anticancer Properties of Caffeinated Complexes via Computational Chemistry Methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 147-155.
https://doi.org/10.1016/j.saa.2017.12.013
[29]  Galindo-Murillo, R., Ruíz-Azuara, L., Moreno-Esparza, R. and Cortés-Guzmán, F. (2012) Molecular Recognition between DNA and a Copper-Based Anticancer Complex. Physical Chemistry Chemical Physics, 14, 15539-15546.
https://doi.org/10.1039/c2cp42185b
[30]  Deubel, D.V. and Chifotides, H.T. (2007) Guanine Binding to Dirhodium Tetracarboxylate Anticancer Complexes: Quantum Chemical Calculations Unravel an Elusive Mechanism. Chemical Communications, 33, 3438-3440.
https://doi.org/10.1039/b709209a
[31]  Rafi, U.M., Mahendiran, D., Haleel, A.K. and Nankar, R.P. (2016) New Pyridazine-Based Binuclear Nickel (II), Copper (II) and Zinc (II) Complexes as Prospective Anticancer Agents. New Journal of Chemistry, 40, 2451-2465.
https://doi.org/10.1039/C5NJ02739J
[32]  ?poner, J.E., Leszczynski, J. and ?poner, J. (2006) Mechanism of Action of Anticancer Titanocene Derivatives: An Insight from Quantum Chemical Calculations. The Journal of Physical Chemistry B, 110, 19632-19636.
https://doi.org/10.1021/jp063477r

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133