全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用矩阵理论研究低维材料的稳定存在性准则
Study on the Stable Existence Criteria of Low-Dimensional Materials Using Matrix Theory

DOI: 10.12677/MS.2020.103020, PP. 154-161

Keywords: 低维材料,正定矩阵,原子势能
Low-Dimensional Materials
, Positive Definite Matrix, Atomic Potential Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用矩阵理论和原子势能,给出了低维材料稳定存在的准则,将其用于直单元素一维材料和平单元素二维材料稳定存在条件的计算中,推导出单原子碳链能稳定存在,碳的平蜂窝状结构能稳定存在,硅和锗的平蜂窝状结构不能稳定存在,这与已有结论一致。
Using matrix theory and atomic potential energy, a criterion for the stable existence of low-dimen- sional materials is given, which is used to calculate the stable existence conditions of straight single-element one-dimensional materials and flat single-element two-dimensional materials. It is deduced that the monoatomic carbon chain can exist stably, the flat honeycomb structure of carbon can exist stably, and the flat honeycomb structure of silicon and germanium cannot exist stably, which are consistent with the existing conclusions.

References

[1]  Zhu, X., Tian, C., Dothanh, C.L., et al. (2017) Two-Dimensional Materials as Prospective Scaffolds for Mixed-Matrix Membrane-Based CO2 Separation. ChemSusChem, 10, 3304-3316.
https://doi.org/10.1002/cssc.201700801
[2]  Li, D., Wei, Y., Li, L., et al. (2018) Mxene Molecular Sieving Membranes for Highly Efficient Gas Separation. Nature Communications, 9, 155-162.
https://doi.org/10.1038/s41467-017-02529-6
[3]  Ding, Y., Chen, Y.P., Zhang, X., et al. (2017) Controlled Intercalation and Chemical Exfoliation of Layered Metal- Organic Frameworks Using a Chemically Labile Intercalating Agent. Journal of the American Chemical Society, 139, 23852-23858.
https://doi.org/10.1021/jacs.7b04829
[4]  林良侃, 郑文涛, 马福坤, 邢闯, 谭文杰. 新型相变材料十二水磷酸氢二钠/石墨烯微片在相变墙体中的应用[J]. 材料科学, 2020, 10(1): 17-23.
[5]  Safari, A., Saidur, R., Sulaiman, F.A., Xu, Y. and Dong, J. (2017) A Review on Supercooling of Phase Change Materials in Thermal Energy Storage Systems. Renewable and Sustainable Energy Reviews, 70, 905-919.
https://doi.org/10.1016/j.rser.2016.11.272
[6]  Wang, C., Feng, L., Li, W., Zheng, J., Tian, W. and Li, X. (2012). Shape-Stabilized Phase Change Materials Based on Polyethylene Glycol/Porous Carbon Composite: The Influence of the Pore Structure of the Carbon Materials. Solar Energy Materials and Solar Cells, 105, 21-26.
https://doi.org/10.1016/j.solmat.2012.05.031
[7]  Peierls, R. (1935) Quelques propriétés typiques des corps solides. Annales de l’Institut Henri Poincaré, 3, 177-222.
http://www.numdam.org/item?id=AIHP_1935__5_3_177_0
[8]  Landau, L.D. (1937) Zur Theorie der phasenumwandlungen II. Physikalische zeitschrift der Sowjetunion, 11, 26-35.
[9]  Mermin, N.D. and Wagner, H. (1966) Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Physical Review Letters, 17, 1133-1136.
https://doi.org/10.1103/PhysRevLett.17.1133
[10]  Chen, J., Wang, B. and Hu, Y. (2017) An Existence Criterion for Low-Dimensional Materials. Journal of the Mechanics and Physics of Solids, 107, 451-468.
https://doi.org/10.1016/j.jmps.2017.07.017
[11]  Güng?rdü, U., Utkan, N.R., Tretiakov, O.A., et al. (2016) Stability of Skyrmion Lattices and Symmetries of Quasi-Two- Dimensional Chiral Magnets. Physical Review B, 93, Article ID: 064428.
https://doi.org/10.1103/PhysRevB.93.064428
[12]  Song, T., Yang, M., Chai, J., et al. (2016) The Stability of Aluminium Oxide Monolayer and Its Interface with Two- Dimensional Materials. Scientific Reports, 6, Article No. 29221.
https://doi.org/10.1038/srep29221
[13]  Chen, J. and Wang, B. (2019) Existence Criteria and Validity of Plate Models for Graphene-Like Materials. Science China Physics, Mechanics & Astronomy, 62, 954611.
https://doi.org/10.1007/s11433-018-9332-2
[14]  孟繁臣. 低维碳材料结构和稳定性的第一性原理计算[D]: [硕士学位论文]. 成都: 西南交通大学, 2014.
[15]  张晓宇. 碳纳米管稳定性、弹性性质及接触问题的研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2005.
[16]  欧阳玉, 彭景翠, 王慧, 等. 碳纳米管的稳定性研究[J]. 物理学报, 2008, 57(1): 615-620.
[17]  Born, M. and Misra, R.D. (1940) On the Stability of Crystal Lattices. IV. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 466-478.
http://journals.cambridge.org/abstract_S0305004100017515
https://doi.org/10.1017/S0305004100017515
[18]  王萼芳, 石生明. 高等代数(第五版)[M]. 北京: 高等教育出版社, 2019.
[19]  Jin, C.H., et al. (2009) Deriving Carbon Atomic Chains from Grapheme. Physical Review Letters, 102, Article ID: 205501.
https://doi.org/10.1103/PhysRevLett.102.205501
[20]  Cretu, O., Botello-Mendez, A.R., Janowska, I., Pham-Huu, C., Charlier, J.-C. and Banhart, F. (2013) Electrical Transport Measured in Atomic Carbon Chains. Nano Letters, 13, 3487-3493.
https://doi.org/10.1021/nl4018918
[21]  Cahangirov, S., Topsakal, M., Aktürk, E., ?ahin, H. and Ciraci, S. (2009) Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Physical Review Letters, 102, Article ID: 236804.
https://doi.org/10.1103/PhysRevLett.102.236804

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133