%0 Journal Article
%T 利用矩阵理论研究低维材料的稳定存在性准则
Study on the Stable Existence Criteria of Low-Dimensional Materials Using Matrix Theory
%A 高东杰
%A 李丽丽
%J Material Sciences
%P 154-161
%@ 2160-7621
%D 2020
%I Hans Publishing
%R 10.12677/MS.2020.103020
%X 利用矩阵理论和原子势能,给出了低维材料稳定存在的准则,将其用于直单元素一维材料和平单元素二维材料稳定存在条件的计算中,推导出单原子碳链能稳定存在,碳的平蜂窝状结构能稳定存在,硅和锗的平蜂窝状结构不能稳定存在,这与已有结论一致。
Using matrix theory and atomic potential energy, a criterion for the stable existence of low-dimen- sional materials is given, which is used to calculate the stable existence conditions of straight single-element one-dimensional materials and flat single-element two-dimensional materials. It is deduced that the monoatomic carbon chain can exist stably, the flat honeycomb structure of carbon can exist stably, and the flat honeycomb structure of silicon and germanium cannot exist stably, which are consistent with the existing conclusions.
%K 低维材料,正定矩阵,原子势能
Low-Dimensional Materials
%K Positive Definite Matrix
%K Atomic Potential Energy
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=34687