全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空间分布阶时间分数阶扩散方程的有限体积法
Finite Volume Method for a Space Distributed-Order Time-Fractional Diffusion Equation

DOI: 10.12677/PM.2019.93047, PP. 351-361

Keywords: 空间分布阶方程,时间分数阶扩散方程,有限体积法,稳定性和收敛性
Space Distributed-Order Equation
, Time-Fractional Diffusion Equation, Finite Volume Method, Stability and Convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用有限体积法研究了空间分布阶时间分数阶扩散方程。首先,用中点求积法将空间分布阶项转化为多项空间分数阶项,利用有限体积法对多项空间分数阶项进行离散。而对于时间分数阶导数,我们采用有限差分法。其次,我们证明了迭代格式的无条件稳定性和收敛性。最后通过一个数值例子来证明算法的有效性。
In this paper, the space distributed-order time-fractional diffusion equation is considered. We propose a finite volume method to solve the considered equation. Firstly, we use the mid-point quadrature rule to transform the space distributed-order term into a multi-term fractional term, and the multi-term fractional equation is discretized by the finite volume. For the time-fractional derivative, we apply the finite difference method. We prove that the iterative scheme is uncondi-tionally stable and convergent. A numerical example is presented to verify the effectiveness of the proposed method.

References

[1]  Caputo, M. (1995) Mean Fractional-Order-Derivatives Differential Equations and Filters. Annali dell Universita di Ferrara, 41, 73-84.
[2]  Hu, X., Liu, F., Turner, I. and Anh, V. (2016) An Implicit Numerical Method of a New Time Distributed-Order and Two-Sided Space-Fractional Advection-Dispersion Equation. Numerical Algorithms, 72, 393-407.
https://doi.org/10.1007/s11075-015-0051-1
[3]  Bu, W., Xiao, A. and Zeng, W. (2017) Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations. Journal of Scientific Computing, 72, 422-441.
https://doi.org/10.1007/s10915-017-0360-8
[4]  Li, Z., Luchko, Y. and Yamamoto, M. (2017) Analyticity of Solutions to a Distributed Order Time-Fractional Diffusion Equation and Its Application to an Inverse Problem. Computers and Mathematics with Applications, 73, 1041-1052.
https://doi.org/10.1016/j.camwa.2016.06.030
[5]  Liu, Q., Mu, S., Liu, Q., Liu, B., Bi, X., Zhuang, P. and Li, B. (2018) An RBF Based Meshless Method for the Distributed Order Time Fractional Advection-Diffusion Equation. Engineering Analysis with Boundary Elements, 96, 55-63.
https://doi.org/10.1016/j.enganabound.2018.08.007
[6]  Li, J., Liu, F., Feng, L. and Turner, I. (2017) A Novel Finite Volume Method for the Riesz Space Distributed-Order Advection Diffusion Equation. Applied Mathematical Modelling, 46, 536-553.
https://doi.org/10.1016/j.apm.2017.01.065
[7]  Jia, J. and Wang, H. (2018) A Fast Finite Difference Method for Distribut-ed-Order Space-Fractional Partial Differential Equations on Convex Domains. Computers and Mathematics with Applications, 75, 2031-2043.
https://doi.org/10.1016/j.camwa.2017.09.003
[8]  Zhang, Y. and Meerschaert, M. (2008) Particle Tracking for Time Fractional Diffusion. Physical Review E, 78, 1-7.
[9]  Soklov, I.M., Chechkin, A.V. and Klafter, J. (2004) Distributed-Order Fractional Kinetics. Acta Physica Polonica B, 35, 1323-1341.
[10]  Lin, Y. and Xu, C. (2007) Finite Difference/Spectral Approximations for the Time-Fractional Diffusion Equation. Journal of Computational Physics, 225, 1533-1552.
https://doi.org/10.1016/j.jcp.2007.02.001
[11]  Li, J., Liu, F., Feng, L. and Turner, I. (2017) A Novel Finite Volume Method for the Riesz Space Distributed-Order Diffusion Equation. Computers and Mathematics with Applications, 74, 772-783.
https://doi.org/10.1016/j.camwa.2017.05.017
[12]  Shen, S., Liu, F., Anh, V. and Turner, I. (2006) Detailed Analysis of a Con-servative Difference Approximation for the Time Fractional Diffusion Equation. Journal of Computational and Applied Mathematics, 22, 1-19.
https://doi.org/10.1007/bf02832034
[13]  Feng, L.B., Zhuang, P., Liu, F. and Turner, I. (2015) Stability and Convergence of a New Finite Volume Method for a Two-Sided Space-Fractional Diffusion Equation. Applied Mathematics and Computation, 257, 52-65.
https://doi.org/10.1016/j.amc.2014.12.060

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133