%0 Journal Article %T 空间分布阶时间分数阶扩散方程的有限体积法
Finite Volume Method for a Space Distributed-Order Time-Fractional Diffusion Equation %A 杨莹莹 %A 李景 %J Pure Mathematics %P 351-361 %@ 2160-7605 %D 2019 %I Hans Publishing %R 10.12677/PM.2019.93047 %X
本文利用有限体积法研究了空间分布阶时间分数阶扩散方程。首先,用中点求积法将空间分布阶项转化为多项空间分数阶项,利用有限体积法对多项空间分数阶项进行离散。而对于时间分数阶导数,我们采用有限差分法。其次,我们证明了迭代格式的无条件稳定性和收敛性。最后通过一个数值例子来证明算法的有效性。
In this paper, the space distributed-order time-fractional diffusion equation is considered. We propose a finite volume method to solve the considered equation. Firstly, we use the mid-point quadrature rule to transform the space distributed-order term into a multi-term fractional term, and the multi-term fractional equation is discretized by the finite volume. For the time-fractional derivative, we apply the finite difference method. We prove that the iterative scheme is uncondi-tionally stable and convergent. A numerical example is presented to verify the effectiveness of the proposed method.
%K 空间分布阶方程,时间分数阶扩散方程,有限体积法,稳定性和收敛性
Space Distributed-Order Equation %K Time-Fractional Diffusion Equation %K Finite Volume Method %K Stability and Convergence %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=30297