全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二维MoS2/MoO2混合层结构的制备与表征
Preparation and Characterization of Two Dimensional MoS2/MoO2 Mixed Structures

DOI: 10.12677/CMP.2019.82005, PP. 33-40

Keywords: 二维材料,化学气相沉积法,MoS2/MoO2混合层结构
Two-Dimensional Materials
, CVD, MoS2/MoO2 Mixed Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,半导体性的二维过渡金属硫族化合物(2D-TMDCs)由于其在半导体工业上的潜在应用而备受青睐。本文利用化学气相沉积法(CVD),以MoO3粉末和S粉为前驱体,制备出了六边形和四边形的MoS2/MoO2混合层结构。我们首先利用光学显微镜(OM)和扫描电镜(SEM)观测了样品,然后通过X射线光电子谱(XPS)和能量色散谱(EDS)测试对样品的成分进行了初步判定,最后通过Raman光谱确定了我们制备的样品就是MoS2/MoO2混合层结构。同时,我们通过对比实验,对混合层结构的生长机理进行了探究。
In recent years, semiconducting two-dimensional transition metal dichalcogenides have been concerned for their potential applications in the semiconductor industry. In this paper, the hexagonal and rhomboic MoS2/MoO2 mixed structures were prepared by chemical vapor deposition method using MoO3 powder and S powder as precursors. First, the morphology of samples was observed by optical microscopy and SEM, and then the composition of samples was determined by XPS and EDS. Finally, the MoS2/MoO2 mixed structures of samples we prepared was confirmed by the Raman spectra. At the same time, we tried to explore the growth mechanisms of the mixed structure by comparative experiments.

References

[1]  Sangwan, V.K., Arnold, H.N., Jariwala, D., et al. (2013) Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors. Nano Letters, 13, 4351-4355.
https://doi.org/10.1021/nl402150r
[2]  Wu, C.C., Jariwala, D., Sangwan, V.K., et al. (2013) Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. Journal of Physical Chemistry Letters, 4, 2508-2513.
https://doi.org/10.1021/jz401199x
[3]  Wang, Q.H., Kalantarzadeh, K., Kis, A., et al. (2012) Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology, 7, 699-712.
https://doi.org/10.1038/nnano.2012.193
[4]  Kadantsev, E.S. and Hawrylak, P. (2012) Electronic Structure of a Single MoS2 Monolayer. Solid State Communications, 152, 909-913.
https://doi.org/10.1016/j.ssc.2012.02.005
[5]  Radisavljevic, B., Whitwick, M. and Kis, A. (2011) Integrated Circuits and Logic Operations Based on Single-Layer MoS2. ACS Nano, 5, 9934-9938.
https://doi.org/10.1021/nn203715c
[6]  Radisavljevic, B., Radenovic, A., Brivio, J., et al. (2011) Single-Layer MoS2 Transistors. Nature Nanotechnology, 6, 147-150.
https://doi.org/10.1038/nnano.2010.279
[7]  Splendiani, A., Sun, L., Zhang, Y., et al. (2010) Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 10, 1271-1275.
https://doi.org/10.1021/nl903868w
[8]  De Jong, S., Haas, A., Qian, J., et al. (2010) Atomically Thin MoS2: A New Direct-Gap Semiconductor.
[9]  Ataca, C., ?ahin, H., Aktürk, E., et al. (2011) Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects. Journal of Physical Chemistry C, 115, 3934-3941.
https://doi.org/10.1021/jp1115146
[10]  Wang, Z., Chen, J.S., Zhu, T., et al. (2010) One-Pot Synthesis of Uniform Carbon-Coated MoO2 Nanospheres for High-Rate Reversible Lithium Storage. Chemical Communications, 46, 6906.
https://doi.org/10.1039/c0cc01174f
[11]  Ni, J., Zhao, Y., Li, L., et al. (2015) Ultrathin MoO2 Nanosheets for Superior Lithium Storage. Nano Energy, 11, 129-135.
https://doi.org/10.1016/j.nanoen.2014.10.027
[12]  Bento, A., Sanches, A., Medina, E., et al. (2015) MoO2 Nanoparticles as Highly Efficient Olefin Epoxidation Catalysts. Applied Catalysis A General, 504, 399-407.
https://doi.org/10.1016/j.apcata.2015.03.024
[13]  Yang, L., Zhou, W., Hou, D., et al. (2015) Porous Metallic MoO2-Supported MoS2 Nanosheets for Enhanced Electrocatalytic Activity in the Hydrogen Evolution Reaction. Nanoscale, 7, 5203-5208.
https://doi.org/10.1039/C4NR06754A
[14]  Rajeswari, J., Kishore, P.S. and Viswanathan, B. (2009) One-Dimensional MoO2 Nanorods for Supercapacitor Applications. Electrochemistry Communications, 11, 572-575.
https://doi.org/10.1016/j.elecom.2008.12.050
[15]  Spevack, P.A. and Mcintyre, N.S. (1993) A Raman and XPS Investigation of Supported Molybdenum Oxide Thin Films. 2. Reactions with Hydrogen Sulfide. The Journal of Physical Chemistry, 97, 11031-11036.
https://doi.org/10.1002/chin.199405020
[16]  Jong, A.M.D., Borg, H.J., Ijzendoorn, L.J.V., et al. (1993) Sulfidation Mechanism by Molybdenum Catalysts Supported on Silica/Silicon (100) Model Support Studied by Surface Spectroscopy. Journal of Physical Chemistry, 97, 6477-6483.
https://doi.org/10.1021/j100126a024
[17]  Qin, P., Fang, G., Ke, W., et al. (2014) In Situ Growth of Double-Layer MoO3/MoS2 Film from MoS2 for Hole-Transport Layers in Organic Solar Cell. Journal of Materials Chemistry A, 2, 2742-2756.
https://doi.org/10.1039/c3ta13579a
[18]  Xiao, X., Peng, Z., Chen, C., et al. (2014) Freestanding MoO3?x Nanobelt/Carbon Nanotube Films for Li-Ion Intercalation Pseudocapacitors. Nano Energy, 9, 355-363.
https://doi.org/10.1016/j.nanoen.2014.08.001
[19]  Li, H., Zhang, Q., Yap, C.C.R., et al. (2012) From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 22, 1385-1390.
https://doi.org/10.1002/adfm.201102111
[20]  Windom, B.C., Sawyer, W.G. and Hahn, D.W. (2011) A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems. Tribology Letters, 42, 301-310.
https://doi.org/10.1007/s11249-011-9774-x
[21]  Bolzan, A.A., Kennedy, B.J. and Howard, C.J. (1995) Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Journal of Biosocial Science, 40, 445-458.
[22]  Merchanmerchan, W., Saveliev, A.V. and Taylor, A.M. (2009) Nucleation and Growth Mechanism for Flame Synthesis of MoO2 Hollow Microchannels with Nanometer Wall Thickness. Micron, 40, 821-826.
https://doi.org/10.1016/j.micron.2009.07.002
[23]  Najmaei, S., Liu, Z., Zhou, W., et al. (2013) Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers. Nature Materials, 12, 754-759.
https://doi.org/10.1038/nmat3673
[24]  Wang, S., Rong, Y., Fan, Y., et al. (2014) Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chemistry of Materials, 26, 6371-6379.
https://doi.org/10.1021/cm5025662
[25]  Ma, D., et al. (2015) A Universal Etching-Free Transfer of MoS2 Films for Applications in Photodetectors. Nano Research, 8, 3662-3672.
https://doi.org/10.1007/s12274-015-0866-z
[26]  Li, X.L. and Prof, Y.D.L. (2003) Formation of MoS2 Inorganic Fullerenes (IFs) by the Reaction of MoO3 Nanobelts and S. Chemistry, 9, 2726-2731.
https://doi.org/10.1002/chem.200204635

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133