|
铝电解槽电热场仿真的研究现状与进展
|
Abstract:
[1] | 刘业翔, 李劼. 现代铝电解[M]. 北京: 冶金工业出版社, 2008. |
[2] | Li, J., Liu, J., Liu, W., et al. (2008) Resistance Optimimization of Flxes in Aluminum Reduction Cells. Journal of Central South University of Technology, 15, 20-24. https://doi.org/10.1007/s11771-008-0005-z |
[3] | 杨帅. 基于界面传热机理的铝电解槽综合传热分析模型及其应用[D]: [硕士学位论文]. 长沙: 中南大学, 2013. |
[4] | Zoric, J., Rousar, I., Kuang, Z., et al. (1997) Current Distri-bution in Aluminium Electrolysis Cells with Soderberg Anoder Part II: Mathematical Modelling. Journal of Applied Electrochemistry, 26, 795-802.
https://doi.org/10.1007/BF00683741 |
[5] | Zoric, J., Rousar, I. and Thonstad, J. (1997) Mathematical Modelling of Industrial Aluminium Cells with Prebaked Anodes Part I: Current Distribution and Anode Shape. Journal of Applied Electrochemistry, 26, 928-938.
https://doi.org/10.1023/A:1018401602274 |
[6] | Xu, Y., Li, J., Zhuang, H., et al. (2015) Computational Modeling of Anodic Current Distribution and Anode Shape Change in Aluminium Reduction Cells. Journal of Mining and Met-allurgy, Section B: Metallurg, 51, 7-15.
https://doi.org/10.2298/JMMB140223006X |
[7] | Guérard, S. and C?té, P. (2019) A Transient Model of the Anodic Current Distribution in an Aluminum Electrolysis Cell. In: Chesonism, C., Ed., Light Metals, Springer, Berlin, 595-603. https://doi.org/10.1007/978-3-030-05864-7_74 |
[8] | Dion, L., Kiss, L.I., Poncsak, S., et al. (2018) Simulator of Non-Homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects. Metallurgucal and Materials Transactions B, 49, 737-755. https://doi.org/10.1007/s11663-018-1174-2 |
[9] | Wang, Y., Tie, J. and Sun, S. (2015) Simulation Method Based on Equivalent Circuit to Investigate the Circuit Characteristics in Aluminum Reduction Cell. Transactions of the Indian Institute of Metals, 68, 443-451.
https://doi.org/10.1007/s12666-014-0473-9 |
[10] | Haupin, W.E. (1971) Calculating Thickness of Containing Walls Frozen from Melt. JOM, 23, 41-44.
https://doi.org/10.1007/BF03355715 |
[11] | Solheim, A., Giske?deg?rd, N.-H. and Holt, N.J. (2016) Sideledge Facing Metal in Aluminium Electrolysis Cells: Freezing and Melting in the Presence of a Bath Film. In: Williams, E., Ed., Light Metals, Springer, Berlin, 333-338.
https://doi.org/10.1007/978-3-319-48251-4_55 |
[12] | Giske?deg?rd, N.-H., Solheim, A. and Holt, N.J. (2016) Sideledge Facing Metal in Aluminium Electrolysis Cells: Preliminary Modelling Study of Bath Film Formation. In: Williams, E., Ed., Light Metals, Springer, Berlin, 423-428.
https://doi.org/10.1002/9781119274780.ch69 |
[13] | Bruggeman, J.N. and Danka, D.J. (1990) Two-Dimensional Thermal Modeling of the Hall-Héroult Cell. In: Light Metals, Springer, Berlin, 203-211. |
[14] | Ahmed, H.A., Elrefale, F.A., EI-Demerdash, M.F., et al. (1993) Development of a Thermal Model for Prebaked Aluminium Reduction Cells at the Aluminum Company of Egypt (Egyptalum). In: Das, S.K., Ed., Light Metals, TMS (The Minerals, Metals & Mate-rials Society), Denver, 375-378. |
[15] | 李景江, 邱竹贤. 铝电解槽阴极电场的计算机仿真[J]. 东北工学院学报, 1989, 10(6): 591-597. |
[16] | 李劼, 程迎军, 赖延清, 等. 大型预焙槽电解槽电、热场的有限元计算[J]. 计算物理, 2003, 20(4): 351-355. |
[17] | Li, J., Liu, W., Lai, Y.Q., et al. (2007) Analysis of Cathode Voltage Drop in Aluminum Electrolysis Cells with an Electric Contact Model. In: Light Metals, Orlando, FL, 465-469. |
[18] | Dupuis, M. (1994) Thermo-Electric Analysis of the Grande-Baie Aluminum Reduction Cell. In: Light Metals, Warrendale, PA, 339-342. |
[19] | Dupuis, M. (1998) Computation of Aluminum Reduction Cell Energy Balance Using ANSYS Finite Element Models. In: Light Metals, Jonquìère, 294-302. |
[20] | 尹诚刚. 面向在线仿真的铝电解槽电–热场耦合建模研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014. |
[21] | 刘浩. 铝电解槽的多物理场仿真研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2013. |
[22] | 陶文举. 大型预焙铝电解槽水平电流的研究[D]: [博士学位论文]. 沈阳: 东北大学, 2016. |
[23] | 张家奇. 基于数学模型的铝电解槽动态过程及其预报系统研究[D]: [博士学位论文]. 长沙: 中南大学, 2011. |
[24] | Nayak, R.K. (2018) Effect of Ledge Shape on Temperature and Current Distribution of Hall-Heroult Cell. Modeling and Simulation, 5, 1875-1876. https://doi.org/10.1016/j.matpr.2018.06.222 |
[25] | Xu, Z.G., Song, L.L., Ju, M.S., et al. (2016) Online Monitoring of Three Dimensional Ledge Profile of Aluminum Electrolytic Cell. Advances in Intelligent Systems Research, 133, 388-392. https://doi.org/10.2991/aiie-16.2016.89 |
[26] | Cheung, C.-Y., Menictas, C., Bao, J., et al. (2012) Impacts of Anode Set on the Energy Re-Distribution of PB Aluminum Smelting Cells. The Minerals, Metals and Materials Society, Pittsburgh, 943-947.
https://doi.org/10.1007/978-3-319-48179-1_164 |
[27] | Cheung, C.-Y., Menictas, C., Bao, J., et al. (2012) Spatial Temperature Profiles in an Aluminum Reduction Cell under Different Anode Current Distributions. AIChE Journal, 59, 1544-1556. https://doi.org/10.1002/aic.13942 |
[28] | Cheung, C.-Y., Menicats, C., Bao, J., et al. (2015) Spatial Thermal Condition in Aluminum Reduction Cells under Influences of Electrolyte Flow. Chemical Engineering Research and Design, 100, 1-14.
https://doi.org/10.1016/j.cherd.2015.04.034 |
[29] | 王恒. 铝电解槽电–热–应力场及钠膨胀应力研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2016. |
[30] | 丁培林. 铝电解下料过程中氧化铝浓度分布及电解质温度场的数值模拟分析[D]: [硕士学位论文]. 武汉: 华中科技大学, 2016. |
[31] | 梁金鼎. 大型铝电解槽热-流强耦合建模及三维槽帮影响因素研究[D]: [硕士学位论文]. 长沙: 中南大学, 2017. |
[32] | Jessen, S.W. (2008) Mathematical Modeling of a Hall Héroult Aluminum Reduction Cell. Technical University of Denmark, Copenhagen. |
[33] | Gheribi, A.E., Salanne, M. and Chartrand, P. (2016) Formulation of Temperature-Dependent Thermal Conductivity of NaF, Be-ta-Na3AlF6, Na5Al3F14, and Molten Na3AlF6 Supported by Equilibrium Molecular Dynamics and Density Functional Theory. Journal of Physical Chemistry, 120, 2287-2288. https://doi.org/10.1021/acs.jpcc.6b07959 |
[34] | A?men, E., Gheribi, S.P., et al. (2017) Thermal Conductivity of the Sideledge in Aluminium Electrolysis Cells: Experiments and Numerical Modelling. The Journal of Chemical Physics, 146, 1-10. https://doi.org/10.1063/1.4978235 |
[35] | A?men, E. and Gheribi, P.C. (2017) Thermal Conductivity of Compounds Present in the Side Ledge in Aluminium Electrolysis Cells. The Minerals, Metals and Materials Society, 69, 2412-2417.
https://doi.org/10.1007/s11837-017-2563-8 |
[36] | 梅炽. 有色冶金炉设计手册[M]. 北京: 冶金工业出版社, 2000. |
[37] | Singh, R., Das, K., Mishra, A.K., et al. (2016) An Approach for Estimation of Cathode Voltage Drop in an Aluminum Reduction Cell with an Inclined Carbon Block and a Copper Insert. Transactions of the Indian Institute of Metals, 70, 1795-1804. https://doi.org/10.1007/s12666-016-0978-5 |
[38] | Solheim, A. (2011) Some Aspects of Heat Transfer between Bath and Sideledge in Aluminum Reduction Cells. In: Lindsay, S.J., Ed., Light Metals, TMS, San Diego, 381-386. https://doi.org/10.1002/9781118061992.ch68 |
[39] | Sevro, D.S. and Gusberti, V. (2009) A Modeling Approach to Estimate Bath and Metal Heat Transfer Coefficients. In: Bearne, G., Light Metals, TMS, San Francisco, 557-562. |
[40] | 崔喜风, 邹忠, 张红亮, 等. 预焙铝电解槽三维槽帮形状的模拟计算[J]. 中南大学学报(自然科学版), 2012, 43(3): 815-820. |
[41] | Allard, F., Desilets, M. and LeBreux, M. (2019) Improved Heat Transfer Modeling of the Top of Aluminum Electrolysis Cells. International Journal of Heat and Mass Transfer, 132, 1262-1276.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.062 |
[42] | Wang, Q., Li, B.K. and Fafard, M. (2016) Effect of Anode Change on Heat Transfer and Magneto-Hydrodynamic Flow in Aluminum Reduction Cell. The Minerals, Metals and Materials Society, 68, 610-622.
https://doi.org/10.1007/s11837-015-1714-z |