|
单指标模型的加权复合分位数回归
|
Abstract:
[1] | H?rdle, W., Hall, P. and Ichimura, H. (1993) Optimal Smoothing in Single-Index Models. The Annals of Statistics, 21, 157-178. https://doi.org/10.1214/aos/1176349020 |
[2] | H?rdle, W. and Stoker, T. (1989) Investing Smooth Multiple Regression by the Method of Average Derivatives. Journal of the American Statistical Association, 84, 986-995. https://doi.org/10.1080/01621459.1989.10478863 |
[3] | Carroll, R.J., Fan, J., Gijbels, I. and Wand, M.P. (1997) Generalized Partially Linear Single-Index Models, Journal of the American Statistical Association, 92, 477-489. https://doi.org/10.1080/01621459.1997.10474001 |
[4] | Xia, Y. and H?rdle, W. (2006) Semi-Parametric Estimation of Partially Linear Single-Index Models. Journal of Multivariate Analysis, 97, 1162-1184. https://doi.org/10.1016/j.jmva.2005.11.005 |
[5] | Xia, Y., Tong, H., Li, W.K. and Zhu, L. (2002) An Adaptive Estimation of Dimension Reduction Space. Journal of the Royal Statistical Society, Series B, 64, 363-410. https://doi.org/10.1111/1467-9868.03411 |
[6] | Liu, J., Zhang, R., Zhao, W. and Lv, Y. (2013) A Robust and Efficient Estimation Method for Single Index Models. Journal of Multivariate Analysis, 122, 226-238. https://doi.org/10.1016/j.jmva.2013.08.007 |
[7] | Jiang, R., Qian, W.M. and Zhou, Z.G. (2016) Weighted Composite Quantile Regression for Single-Index Models. Journal of Multivariate Analysis, 148, 34-48. https://doi.org/10.1016/j.jmva.2016.02.015 |
[8] | Wang, J.L., Xue, L.G., Zhu, L.X. and Chong, Y.S. (2010) Estimation for a Par-tial-Linear Single-Index Model. The Annals of Statistics, 1, 246-274. https://doi.org/10.1214/09-AOS712 |
[9] | Liang, H., Liu, X., Li, R.Z. and Tsai, C.L. (2010) Estimation and Testing for Partially Linear Single-Index Models. The Annals of Statistics, 6, 3811-3836. https://doi.org/10.1214/10-AOS835 |
[10] | Christou, E. and Akritas, M.G. (2016) Single Index Quantile Regression for Heteroscedastic Data. Journal of Multivariate Analysis, 150, 169-182. https://doi.org/10.1016/j.jmva.2016.05.010 |
[11] | Zou, H. and Yuan, M. (2008) Composite Quantile Regression and the Oracle Model Selection Theory. Annals of Statistics, 36, 1108-1126. https://doi.org/10.1214/07-AOS507 |
[12] | Jiang, R., Zhou, Z.G., Qian, W.M. and Shao, W.Q. (2012) Single-Index Composite Quantile Regression. Journal of the Korean Statistical Society, 3, 323-332. https://doi.org/10.1016/j.jkss.2011.11.001 |
[13] | Zhao, K. and Lian, H. (2016) A Note on the Efficiency of Composite Quantile Regression. Journal of Statistical Computation and Simulation, 86, 1334-1341. https://doi.org/10.1080/00949655.2015.1062096 |
[14] | Kraus, D. and Czado, C. (2017) D-Vine Copula Based Quantile Regression. Computational Statistics and Data Analysis, 110, 1-18. https://doi.org/10.1016/j.csda.2016.12.009 |
[15] | Jiang, R., Qian, W.M. and Zhou, Z.G. (2016) Single-Index Composite Quantile Regression with Heteroscedasticity and General Error Distributions. Statistical Papers, 57, 185-203. https://doi.org/10.1007/s00362-014-0646-y |
[16] | Tian, Y., Zhu, Q. and Tian, M. (2016) Estimation of Linear Composite Quantile Regression Using EM Algorithm. Statistics and Probability Letters, 117, 183-191. https://doi.org/10.1016/j.spl.2016.05.019 |
[17] | Wang, Q. and Wu, R. (2013) Shrinkage Estimation of Partially Linear Single-Index Models. Statistics and Probability Letters, 83, 2324-2331. https://doi.org/10.1016/j.spl.2013.06.019 |
[18] | Wu, T.Z., Yu, K. and Yu, Y. (2010) Single-Index Quantile Regression. Journal of Multivariate Analysis, 101, 1607-1621. https://doi.org/10.1016/j.jmva.2010.02.003 |
[19] | Rémillard, B., Nasri, B. and Bouezmarni, T. (2017) On Copula-Based Condi-tional Quantile Estimators. Statistics and Probability Letters, 128, 14-20. https://doi.org/10.1016/j.spl.2017.04.014 |
[20] | Fan, J., Hu, T.C. and Truong, Y.K. (1994) Robust Nonparametric Function Estimation. Scandinavian Journal of Statistics, 21, 433-446. |
[21] | Pollard, D. (1991) Asymptotics for Least Absolute Deviation Regression Estimators. Econometric Theory, 7, 186-199.
https://doi.org/10.1017/S0266466600004394 |