全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单指标模型的加权复合分位数回归
Single-Index Weighted Composite Quantile Regression

DOI: 10.12677/SA.2019.85087, PP. 766-776

Keywords: 单指标模型,复合分位数回归,分位数回归
Single-Index Model
, Composite Quantile Regression, Quantile Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

加权复合分位数回归(WCQR)是在分位数回归基础上发展起来的一种稳健估计,并且其效率与半参数极大似然估计几乎相同,因而越来越受到人们的关注。近年来,WCQR方法已经被推广到了单指标模型中,但是目前单指标模型的WCQR方法都涉及到算法的迭代问题,其严重影响运算速度。为解决以上问题,本文提出一种非迭代的估计算法,并给出估计量的渐近分布。最后通过模拟和实证研究验证了本文所提出方法的有效性。
Weighted composite quantile regression (WCQR), a robust estimation based on quantile regression, is becoming increasingly popular due to the nearly same efficiency as the semi-parametric maximum likelihood estimator. Recently, WCQR method has been promoted extensively to sin-gle-index model. However, the recent WCQR methods for single-index model are necessarily itera-tive, which seriously affects the computing speed. We propose a non-iterative estimation algorithm, and derive the asymptotic distribution of the proposed estimator. The simulation and empirical studies are conducted to illustrate the finite sample performance of the proposed methods.

References

[1]  H?rdle, W., Hall, P. and Ichimura, H. (1993) Optimal Smoothing in Single-Index Models. The Annals of Statistics, 21, 157-178.
https://doi.org/10.1214/aos/1176349020
[2]  H?rdle, W. and Stoker, T. (1989) Investing Smooth Multiple Regression by the Method of Average Derivatives. Journal of the American Statistical Association, 84, 986-995.
https://doi.org/10.1080/01621459.1989.10478863
[3]  Carroll, R.J., Fan, J., Gijbels, I. and Wand, M.P. (1997) Generalized Partially Linear Single-Index Models, Journal of the American Statistical Association, 92, 477-489.
https://doi.org/10.1080/01621459.1997.10474001
[4]  Xia, Y. and H?rdle, W. (2006) Semi-Parametric Estimation of Partially Linear Single-Index Models. Journal of Multivariate Analysis, 97, 1162-1184.
https://doi.org/10.1016/j.jmva.2005.11.005
[5]  Xia, Y., Tong, H., Li, W.K. and Zhu, L. (2002) An Adaptive Estimation of Dimension Reduction Space. Journal of the Royal Statistical Society, Series B, 64, 363-410.
https://doi.org/10.1111/1467-9868.03411
[6]  Liu, J., Zhang, R., Zhao, W. and Lv, Y. (2013) A Robust and Efficient Estimation Method for Single Index Models. Journal of Multivariate Analysis, 122, 226-238.
https://doi.org/10.1016/j.jmva.2013.08.007
[7]  Jiang, R., Qian, W.M. and Zhou, Z.G. (2016) Weighted Composite Quantile Regression for Single-Index Models. Journal of Multivariate Analysis, 148, 34-48.
https://doi.org/10.1016/j.jmva.2016.02.015
[8]  Wang, J.L., Xue, L.G., Zhu, L.X. and Chong, Y.S. (2010) Estimation for a Par-tial-Linear Single-Index Model. The Annals of Statistics, 1, 246-274.
https://doi.org/10.1214/09-AOS712
[9]  Liang, H., Liu, X., Li, R.Z. and Tsai, C.L. (2010) Estimation and Testing for Partially Linear Single-Index Models. The Annals of Statistics, 6, 3811-3836.
https://doi.org/10.1214/10-AOS835
[10]  Christou, E. and Akritas, M.G. (2016) Single Index Quantile Regression for Heteroscedastic Data. Journal of Multivariate Analysis, 150, 169-182.
https://doi.org/10.1016/j.jmva.2016.05.010
[11]  Zou, H. and Yuan, M. (2008) Composite Quantile Regression and the Oracle Model Selection Theory. Annals of Statistics, 36, 1108-1126.
https://doi.org/10.1214/07-AOS507
[12]  Jiang, R., Zhou, Z.G., Qian, W.M. and Shao, W.Q. (2012) Single-Index Composite Quantile Regression. Journal of the Korean Statistical Society, 3, 323-332.
https://doi.org/10.1016/j.jkss.2011.11.001
[13]  Zhao, K. and Lian, H. (2016) A Note on the Efficiency of Composite Quantile Regression. Journal of Statistical Computation and Simulation, 86, 1334-1341.
https://doi.org/10.1080/00949655.2015.1062096
[14]  Kraus, D. and Czado, C. (2017) D-Vine Copula Based Quantile Regression. Computational Statistics and Data Analysis, 110, 1-18.
https://doi.org/10.1016/j.csda.2016.12.009
[15]  Jiang, R., Qian, W.M. and Zhou, Z.G. (2016) Single-Index Composite Quantile Regression with Heteroscedasticity and General Error Distributions. Statistical Papers, 57, 185-203.
https://doi.org/10.1007/s00362-014-0646-y
[16]  Tian, Y., Zhu, Q. and Tian, M. (2016) Estimation of Linear Composite Quantile Regression Using EM Algorithm. Statistics and Probability Letters, 117, 183-191.
https://doi.org/10.1016/j.spl.2016.05.019
[17]  Wang, Q. and Wu, R. (2013) Shrinkage Estimation of Partially Linear Single-Index Models. Statistics and Probability Letters, 83, 2324-2331.
https://doi.org/10.1016/j.spl.2013.06.019
[18]  Wu, T.Z., Yu, K. and Yu, Y. (2010) Single-Index Quantile Regression. Journal of Multivariate Analysis, 101, 1607-1621.
https://doi.org/10.1016/j.jmva.2010.02.003
[19]  Rémillard, B., Nasri, B. and Bouezmarni, T. (2017) On Copula-Based Condi-tional Quantile Estimators. Statistics and Probability Letters, 128, 14-20.
https://doi.org/10.1016/j.spl.2017.04.014
[20]  Fan, J., Hu, T.C. and Truong, Y.K. (1994) Robust Nonparametric Function Estimation. Scandinavian Journal of Statistics, 21, 433-446.
[21]  Pollard, D. (1991) Asymptotics for Least Absolute Deviation Regression Estimators. Econometric Theory, 7, 186-199.
https://doi.org/10.1017/S0266466600004394

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133