%0 Journal Article %T 单指标模型的加权复合分位数回归
Single-Index Weighted Composite Quantile Regression %A 杨紫微 %A 姜荣 %J Statistics and Applications %P 766-776 %@ 2325-226X %D 2019 %I Hans Publishing %R 10.12677/SA.2019.85087 %X
加权复合分位数回归(WCQR)是在分位数回归基础上发展起来的一种稳健估计,并且其效率与半参数极大似然估计几乎相同,因而越来越受到人们的关注。近年来,WCQR方法已经被推广到了单指标模型中,但是目前单指标模型的WCQR方法都涉及到算法的迭代问题,其严重影响运算速度。为解决以上问题,本文提出一种非迭代的估计算法,并给出估计量的渐近分布。最后通过模拟和实证研究验证了本文所提出方法的有效性。
Weighted composite quantile regression (WCQR), a robust estimation based on quantile regression, is becoming increasingly popular due to the nearly same efficiency as the semi-parametric maximum likelihood estimator. Recently, WCQR method has been promoted extensively to sin-gle-index model. However, the recent WCQR methods for single-index model are necessarily itera-tive, which seriously affects the computing speed. We propose a non-iterative estimation algorithm, and derive the asymptotic distribution of the proposed estimator. The simulation and empirical studies are conducted to illustrate the finite sample performance of the proposed methods.
%K 单指标模型,复合分位数回归,分位数回归
Single-Index Model %K Composite Quantile Regression %K Quantile Regression %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=32669