全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于样本均衡技术的专利侵权预警研究
Research of Patent Infringement Early Warning Based on Sample Equilibrium Technology

DOI: 10.12677/SSEM.2019.86034, PP. 227-233

Keywords: 专利预警,知识产权,样本均衡,随机森林
Patent Early Warning
, Intellectual Property, Sample Equilibrium, Random Forest

Full-Text   Cite this paper   Add to My Lib

Abstract:

知识产权的保护影响科研人员的创造力和企业的研发动力,是创新的重要驱动力和法律保障,专利侵权预警是知识产权保护的重要组成,而大量的专利侵权诉讼案件数据为挖掘、分析专利侵权行为模式,发现专利侵权的风险提供了基础。本文利用专利相关的特征信息,基于样本均衡技术构建了专利预警模型,对比分析了随机森林、贝叶斯网络、神经网络、决策树模型、逻辑回归模型和SVM算法的性能。实验结果表明,随机森林模型在样本均衡后可取得更好的预警效果,能够更好地发现公司与专利之间的侵权诉讼关系,从而有效地实现专利侵权预警的功能。
The protection of intellectual property rights affects the creativity of researchers and development power of enterprises. It is an important driving force and legal guarantee for innovation. Patent infringement warning is an important component of intellectual property protection. A large number of patent infringement lawsuit data are used to analyze the model of patent infringement and to discover the risks of patent infringement. Based on the patent-related feature information, this paper constructs a patent early warning model based on sample equalization technology, and compares the performance of random forest, Bayesian network, neural network, decision tree model, logistic regression model and Support Vector Machine (SVM) algorithm. The experimental results show that the random forest model can obtain better early warning effect after sample equilibrium, and can better discover the infringement litigation relationship between the company and the patent, thus effectively realizing the function of patent infringement warning.

References

[1]  崔胜男, 田玲. 我国专利预警理论研究概述[J]. 科技情报开发与经济, 2013, 23(14): 148-152.
[2]  Chien, C.V. (2011) Predicting Patent Litigation. Texas Law Review, 90, 283-329.
[3]  尹志锋, 邓仪友. 中国企业的专利侵权特征及维权策略研究[J]. 经济管理, 2018, 40(3): 5-21.
[4]  漆苏. 企业国际化经营专利风险因素——基于专利属性的实证研究[J]. 科研管理, 2014, 35(11): 139-145.
[5]  张世玉, 王伟, 陶成琳, 刘思蓓. 企业技术威胁预警模型构建——基于专利组合分析的视角[J]. 情报杂志, 2016, 35(11): 70-74.
[6]  贺宁馨, 李黎明. 我国专利侵权赔偿额的影响因素及预测研究[J]. 科研管理, 2016, 37(10): 137-145.
[7]  张军荣. 专利复杂度、被告实力与侵权赔偿责任承担[J]. 科研管理, 2018, 39(11): 116-121.
[8]  Schankerman, L.M. (2001) Characteristics of Patent Litigation: A Window on Competition. The RAND Journal of Economics, 32, 129-151.
https://doi.org/10.2307/2696401
[9]  Cremers, K. (2004) Determinants of Patent Litigation in Germany. ZEW Discussion Papers 04-72.
https://doi.org/10.2139/ssrn.604467
[10]  Lim, J. (2014) Analysis of the Relationship between Patent Litigation and Citation: Subdivision of Citations. Applied Mathematics & Information Sciences, 8, 2515-2522.
https://doi.org/10.12785/amis/080549
[11]  Marco, A.C. and Miller, R. (2017) Patent Examination Quality and Litigation: Is There a Link? Social Science Electronic Publishing, Rochester.
https://doi.org/10.2139/ssrn.2995698
[12]  Jin, B., Che, C., Yu, K.F., Qu, Y., Guo, L., Yao, C.L., Yu, R.Y. and Zhang, Q. (2016) Minimizing Legal Exposure of High-Tech Companies through Collaborative Filtering Methods. 22nd ACM SIGKDD International Conference, San Francisco, 13-17 August 2016, 127-136.
https://doi.org/10.1145/2939672.2939708
[13]  Su, H.N., Chen, M.L. and Lee, P.C.P. (2012) Patent Litigation Precaution Method: Analyzing Characteristics of US Litigated and Non-Litigated Patents from 1976 to 2010. Sciento-metrics, 92, 181-195.
https://doi.org/10.1007/s11192-012-0716-7
[14]  Lee, C., Song, B. and Park, Y. (2013) How to Assess Patent In-fringement Risks: A Semantic Patent Claim Analysis Using Dependency Relationships. Technology Analysis and Strategic Management, 25, 23-38.
https://doi.org/10.1080/09537325.2012.748893
[15]  Sun, G.L., Guo, Y. and Yang, F. (2015) Technology Early Warning Model: A New Approach Based on Patent Data.
[16]  Petherbridge, L. (2012) On Predicting Patent Litigation. SSRN Electronic Journal, 90, 283-329.
https://doi.org/10.2139/ssrn.1981798
[17]  Kesan, J.P., Schwartz, D.L. and Sichelman, T.M. (2012) Paving the Path to Accurately Predicting Legal Outcomes: A Comment on Professor Chien’s Predicting Patent Litigation. Social Science Electronic Publishing, Rochester.
[18]  张世玉, 王伟, 贾宇希, 姜钰莹. 企业专利威胁预警的P-L模型构建[J]. 情报理论与实践, 2018, 41(5): 5-10.
[19]  曹亚莎, 谭洁, 王奎武, 伍小松. 基于ANP-SWOT模型的湖南粮油产业发展战略[J]. 湖南农业科学, 2017(10): 86-90+94.
[20]  马治国, 秦倩. 中美贸易摩擦背景下中国区域知识产权保护环境的评价与优化[J]. 西安交通大学学报(社会科学版), 2019, 39(5): 1-13.
[21]  陶新民, 郝思媛, 张冬雪, 李震. 基于样本特性欠取样的不均衡支持向量机[J]. 控制与决策, 2013, 28(7): 978-984.
[22]  徐剑, 王馨月, 才子昕, 沈启航, 景丽萍. 价值样本选取的不均衡分类[J]. 计算机科学与探索, 1-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133